初中数学最值问题集锦几何的定值与最值(共8页)_第1页
初中数学最值问题集锦几何的定值与最值(共8页)_第2页
初中数学最值问题集锦几何的定值与最值(共8页)_第3页
初中数学最值问题集锦几何的定值与最值(共8页)_第4页
初中数学最值问题集锦几何的定值与最值(共8页)_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上几何的定值与最值学力训练1如图,正方形ABCD的边长为1,点P为边BC上任意一点(可与B点或C点重合),分别过B、C、D作射线AP的垂线,垂足分别是B、C、D,则BB+CC+DD的最大值为 ,最小值为 2如图,AOB=45°,角内有一点P,PO=10,在角的两边上有两点Q,R(均不同于点O),则PQR的周长的最小值为 3如图,两点A、B在直线MN外的同侧,A到MN的距离AC=8,B到MN的距离BD=5,CD=4,P在直线MN上运动,则的最大值等于 4如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,O的半径为1,则AP+BP的最小值

2、为( ) A1 B C D5如图,圆柱的轴截面ABCD是边长为4的正方形,动点P从A点出发,沿看圆柱的侧面移动到BC的中点S的最短距离是( ) A B C D6如图、已知矩形ABCD,R,P户分别是DC、BC上的点,E,F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是( ) A线段EF的长逐渐增大 B线段EF的长逐渐减小C线段EF的长不改变 D线段EF的长不能确定7如图,点C是线段AB上的任意一点(C点不与A、B点重合),分别以AC、BC为边在直线AB的同侧作等边三角形ACD和等边三角形BCE,AE与CD相交于点M,BD与CE相交于点N(1)求证:MNAB;(

3、2)若AB的长为l0cm,当点C在线段AB上移动时,是否存在这样的一点C,使线段MN的长度最长?若存在,请确定C点的位置并求出MN的长;若不存在,请说明理由(20XX年云南省中考题)8如图,定长的弦ST在一个以AB为直径的半圆上滑动,M是ST的中点,P是S对AB作垂线的垂足,求证:不管ST滑到什么位置,SPM是一定角9已知ABC是O的内接三角形,BT为O的切线,B为切点,P为直线AB上一点,过点P作BC的平行线交直线BT于点E,交直线AC于点F(1)当点P在线段AB上时(如图),求证:PA·PB=PE·PF;(2)当点P为线段BA延长线上一点时,第(1)题的结论还成立吗?如

4、果成立,请证明,如果不成立,请说明理由 10如图,已知;边长为4的正方形截去一角成为五边形ABCDE,其中AF=2,BF=l,在AB上的一点P,使矩形PNDM有最大面积,则矩形PNDM的面积最大值是( ) A8 B12 C D1411如图,AB是半圆的直径,线段CA上AB于点A,线段DB上AB于点B,AB=2;AC=1,BD=3,P是半圆上的一个动点,则封闭图形ACPDB的最大面积是( ) A B C D12如图,在ABC中,BC=5,AC=12,AB=13,在边AB、AC上分别取点D、E,使线段DE将ABC分成面积相等的两部分,试求这样线段的最小长度13如图,ABCD是一个边长为1的正方形,

5、U、V分别是AB、CD上的点,AV与DU相交于点P,BV与CU相交于点Q求四边形PUQV面积的最大值 14利用两个相同的喷水器,修建一个矩形花坛,使花坛全部都能喷到水已知每个喷水器的喷水区域是半径为l0米的圆,问如何设计(求出两喷水器之间的距离和矩形的长、宽),才能使矩形花坛的面积最大?15某住宅小区,为美化环境,提高居民生活质量,要建一个八边形居民广场(平面图如图所示)其中,正方形MNPQ与四个相同矩形(图中阴影部分)的面积的和为800平方米(1)设矩形的边AB=(米),AM=(米),用含的代数式表示为 (2)现计划在正方形区域上建雕塑和花坛,平均每平方米造价为2100元;在四个相同的矩形区域上铺设花岗岩地坪,平均每平方米造价为105元;在四个三角形区域上铺设草坪,平均每平方米造价为40元 设该工程的总造价为S(元),求S关于工的函数关系式 若该工程的银行贷款为元,仅靠银行贷款能否完成该工程的建设任务?若能,请列出设计方案;若不能,请说明理由 若该工程在银行贷款的基础上,又增加资金73000元,问能否完成该工程的建设任务?若能,请列出所有可能的设计方案;若不能,请说明理由(镇江市中考题)16某房地产

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论