




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Chap. 4: Finite FieldsJen-Chang Liu, 2004Adapted from lecture slides by Lawrie BrownThe next morning at daybreak, Star flew indoors, seemingly keen for a lesson. I said, Tap eight. She did a brilliant exhibition, first tapping it in 4, 4, then giving me a hasty glance and doing it in 2, 2, 2, 2, bef
2、ore coming for her nut. It is astonishing that Star learned to count up to 8 with no difficulty, and of her own accord discovered that each number could be given with various different divisions, this leaving no doubt that she was consciously thinking each number. In fact, she did mental arithmetic,
3、 although unable, like humans, to name the numbers. But she learned to recognize their spoken names almost immediately and was able to remember the sounds of the names. Star is unique as a wild bird, who of her own free will pursued the science of numbers with keen interest and astonishing intellige
4、nce. Living with Birds, Len HowardLen HowardnBritish naturalist, who studied bird behaviorsnPublications:nBirds as Individuals (1953)nLiving with Birds (1956). IntroductionnFinite fields: increasing importance in cryptographynAES, Elliptic Curve, IDEA, Public KeynGoal: mathematics for GF(2n)01100010
5、0Plaintext: 2n110100111Ciphertext: 2nT(Plaintext, Key)1. Arbitrary mapping = large keys2. Mathematical form, ex. Hill cipherOutlinenGroup, rings, and fieldsnModular arithmeticnFinite fields of the form GF(p)nEuclids algorithm (find GCD)nPolynomial arithmeticnFinite fields of the form GF(2n)Motivatio
6、nn在封閉且有限的數集合中,可操作的運算種類?(+, -, x, /)GroupRingField+,-+,-,x+,-,x,/GroupnGroup: G, nG: a set of elementsn: binary operation to each pair (a,b) in Gnobeys:nclosure: ab is also in Gnassociative law:(ab)c = a(bc) nhas identity e:ea = ae = a nhas inverses a-1: aa-1 = enif commutative ab = ba nthen forms an
7、 abelian groupExample: group1. Set of integers under addition= Abelian group2. N symbols : Nn=1, 2, , nnSet Sn: all permutations over NnnBinary operation : permutation according to the first element= Group1, 2, , n, 2, 1 , n, , n, n-1, , 13,2,11,3,2=2,3,1Cyclic Groupndefine exponentiation as repeate
8、d application of operatornexample: a3 = aaanand let identity be: e=a0na group is cyclic if every element is a power of some fixed elementni.e. b = akfor some a and every b in groupna is said to be a generator of the groupEX. integers with addition: 1 as the generatorRingnRing: R, +, xnR: a set of “n
9、umbers”n+, x: two operations (addition and multiplication) nRing obeysnR,+: an abelian groupnmultiplication:nhas closurenis associative: ax(bxc)=(axb)xcndistributive over addition: ax(b+c) = axb + axcnif multiplication operation is commutative, it forms a commutative ring axb = bxaExample: RingnThe
10、set of even integers (pos, neg, and 0)nCommutative ringFieldnField: F, +, xnF: a set of numbers n+, x: two operations (addition and multiplication) nField obeys:nRingnF, +: abelian group for addition nF0, x: abelian group for multiplication (ignoring 0) ni.e. with multiplication inverse = division i
11、s possiblenZ, +, x ?Field for n-bit block?011000100Plaintext: 2n110100111Ciphertext: 2n+: additionx: multiplication?Problems: 1. the set of plaintext (and ciphertext) finite 2. how to define +,-,x,/ operationsOutlinenGroup, rings, and FieldsnModular arithmeticnFinite fields of the form GF(p)nEuclids
12、 algorithm (find GCD)nPolynomial arithmeticnFinite fields of the form GF(2n)Modulo operatornmodulo operator: a mod n to be the remainder (0) when a is divided by n) mod (/nannaa, a and n are integersModulo operator (cont.)nIntegers a and b are congruence modulo n a b mod n nwhen divided by n, a & b
13、have same remainder neg. 100 = 34 mod 11 nb is called the residue of a: b= a mod nnintegers can always write: a = qn + bnusually have 0 = b groupModulo 8(=23) ExampleNot all haveMulti. Inverse Not a fieldDoes notproduce allelements inZ8Modular Arithmetic (cont.)nPeculiarities compared with ordinary
14、arith.nif (a+b)(a+c) mod n then bc mod nnExistence of (-a):nif (ab)(ac) mod n then bc mod n ?nExistence of (a-1) ?(-a)+a+b)(-a)+a+c) mod n(a-1) ab)(a-1) ac) mod nNot always true, eg. n=8Multiplicative inverse exists iff. a is relatively prime to n QuestionnDo we have a finite field within Zn ?Modulo
15、 7 example: additionYes foradditive inverseModulo 7 Example: multiply Yes formulti. inverseQuestionnDo we have a finite field within Zn ?nGalois fieldnGF(p): ZP ,the modulo p is a prime numbernUnder ordinary arithmeticnGF(pn): , p is a prime numbern23 does not form a field under normal arithmeticnUn
16、der polynomial arithmeticnpZOutlinenGroup, rings, and FieldsnModular arithmeticnFinite fields of the form GF(p)nEuclids algorithm (find GCD)nPolynomial arithmeticnFinite fields of the form GF(2n)Galois Fields: GF(p)nTheorem: Zn=0,1,n-1 is a commutative ring. Any integer aZn in has a multiplicative i
17、nverse iff a is relatively prime to nnIn other words, nIf n is a prime number, then all nonzero integers in Zn are relatively prime to n= all nonzero integers in Zn have multiplicative inverses= Zn is a finite field= GF(p), p is a primeGalois Fields: GF(p)nGF(p) is the set of integers 0,1, , p-1 wit
18、h arithmetic operations modulo prime pnthese form a finite fieldnsince have multiplicative inversesnhence arithmetic is “well-behaved” and can do addition, subtraction, multiplication, and division without leaving the field GF(p)Example: GF(2)+0 1010 11 0 x0 1010 00 1w-w w-1010 x1 1XORANDQ: How to f
19、ind the multiplicative inverse?nFor GF(7), it is easy to build a tablenFor GF(1759), how to find the multiplicative inverse of 550?OutlinenGroup, rings, and FieldsnModular arithmeticnFinite fields of the form GF(p)nEuclids algorithm (find GCD) and extended Euclids algorithm (find multiplicative inve
20、rse)nPolynomial arithmeticnFinite fields of the form GF(2n)Greatest Common Divisor (GCD)na common problem in number theorynGCD (a,b) of a and b is the largest number that divides evenly into both a and b neg. GCD(60,24) = 12nGCD(.,.)=1: no common factors (except 1) and hence numbers are relatively p
21、rimeneg. GCD(8,15) = 1nhence 8 & 15 are relatively prime Euclids GCD Algorithmnuses theorem that: (ab0)nGCD(a,b) = GCD(b, a mod b) To prove: The set of common divisors of a and b = The set of common divisors of a and (a mod b)Example GCD(1970,1066)1970 = 1 x 1066 + 904 gcd(1066, 904)1066 = 1 x 904 +
22、 162 gcd(904, 162)904 = 5 x 162 + 94 gcd(162, 94)162 = 1 x 94 + 68 gcd(94, 68)94 = 1 x 68 + 26 gcd(68, 26)68 = 2 x 26 + 16 gcd(26, 16)26 = 1 x 16 + 10 gcd(16, 10)16 = 1 x 10 + 6 gcd(10, 6)10 = 1 x 6 + 4 gcd(6, 4)6 = 1 x 4 + 2 gcd(4, 2)4 = 2 x 2 + 0 gcd(2, 0)Finding Inversesncan extend Euclids algori
23、thm:EXTENDED EUCLID(m, b)1.(A1, A2, A3)=(1, 0, m); (B1, B2, B3)=(0, 1, b)2. if B3 = 0return A3 = gcd(m, b); no inverse3. if B3 = 1 return B3 = gcd(m, b); B2 = b1 mod m4. Q = A3 div B35. (T1, T2, T3)=(A1 Q B1, A2 Q B2, A3 Q B3)6. (A1, A2, A3)=(B1, B2, B3)7. (B1, B2, B3)=(T1, T2, T3)8. goto 2Inverse o
24、f 550 in GF(1759)(商)410B2=A2-Q*B2=0-3*1=-3inverseRecall: inverse matrix in Hill ciphernFind inverse matrix fornNote that 26 is not a prime, not every element in 0,1,2,25 has multiplicative inversenInverse formula:7549K9212274319547457911KInverse of Hill cipherQ A3 B3 26 171 17 91 9 81 8 18 1 0A2 B2
25、0 1 1 -1-1 2 2 -32515125207483506161921227239212271711KMultiplicative inverseOutlinenGroup, rings, and FieldsnModular arithmeticnFinite fields of the form GF(p)nEuclids algorithm (find GCD)nPolynomial arithmeticnFinite fields of the form GF(2n)Motivation for GF(2n)nFor a 8-bit blocknZ256 =0,1,255 is
26、 not a field = no divisionnThe largest prime 251,255 are wastednIs that possible to find a field for Z256 ?nYes. Define new arithmetic operations for Z256Mapping from GF(2n) to polynomialsnEx. 8-bit block100101110123456711101001xxxxxxxx= To build the field for 0,1,2,2n-1= Require modular polynomial
27、arithmeticPolynomial ArithmeticnPolynomialsn3 polynomial arithmetic available:nordinary polynomial arithmeticnPolynomial with coefficients in Zp; arithmetic on the coefficients is performed modulo pnPolynomial with coefficients in Zp, and the polynomials are defined modulo a polynomial m(x); arithme
28、tic on the coefficients is performed modulo p1. Ordinary Polynomial ArithmeticnAdd(+) or subtract(-) corresponding coefficientsnMultiply(x) all terms by each otherneg. 1101, 0111nf(x) = x3 + x2 + 1 and g(x) = x2 + x + 1f(x) + g(x) = x3 + 2x2 + x + 2f(x) g(x) = x3 - x f(x) x g(x) = x5+2x4+2x3+2x2+x+1
29、GF(24) ?1. Not in 0,1 2. degree32. Polynomial Arithmetic with Modulo CoefficientsnPolynomial coefficients are in a field F=p,+,xnWe are most interested in coefficients in GF(2)neg. 1101, 0111nlet f(x) = x3 + x2 + 1 and g(x) = x2 + x + 1f(x) + g(x) = x3 + x f(x) x g(x) = x5 + x + 1GF(24) ?degree 33. Modular Polynomial Arithmetic for GF(2n)nPolynomial coefficients
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宁夏卫生健康职业技术学院《播音主持综合训练》2023-2024学年第二学期期末试卷
- 昆明城市学院《乐理与视唱练耳(1)》2023-2024学年第一学期期末试卷
- 中医九种体质的特点及护理
- 教育学案例分析题
- 幼儿园常见病护理
- 2025年乡村全科医学考试案例分析试题及答案
- 2025年江苏农林职业技术学院高职单招(数学)历年真题考点含答案解析
- 2023九年级数学上册 第22章 一元二次方程22.3 实践与探索教学设计 (新版)华东师大版
- 二年级信息技术下册 充实完善演讲稿 3教学设计 泰山版
- 2025年新疆科技职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 探秘京剧脸谱(课件)六年级下册综合实践活动辽师大版
- 静脉采血操作课件
- (一模)2025年广东省高三高考模拟测试 (一) 政治试卷(含官方答案)
- 2025届山东省淄博市高三一模考试地理试题(原卷版+解析版)
- 《C语言指针》教学课件
- 9.3大气压强(课件)(共39张) 2024-2025学年度人教版物理八年级下册
- 《陀螺定向测量技术规程》
- 2025年熔化焊接与热切割考试1000题及答案
- 湖北建筑工程施工统一用表
- 2025年中考语文作文题预测及范文
- 华南理工大学自主招生个人陈述自荐信范文
评论
0/150
提交评论