![高三数学】2007年上海高考理科数学试卷和答案(共5页)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/82e23803-b308-46fb-8042-55410ad4ce1a/82e23803-b308-46fb-8042-55410ad4ce1a1.gif)
![高三数学】2007年上海高考理科数学试卷和答案(共5页)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/82e23803-b308-46fb-8042-55410ad4ce1a/82e23803-b308-46fb-8042-55410ad4ce1a2.gif)
![高三数学】2007年上海高考理科数学试卷和答案(共5页)_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/82e23803-b308-46fb-8042-55410ad4ce1a/82e23803-b308-46fb-8042-55410ad4ce1a3.gif)
![高三数学】2007年上海高考理科数学试卷和答案(共5页)_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/82e23803-b308-46fb-8042-55410ad4ce1a/82e23803-b308-46fb-8042-55410ad4ce1a4.gif)
![高三数学】2007年上海高考理科数学试卷和答案(共5页)_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/82e23803-b308-46fb-8042-55410ad4ce1a/82e23803-b308-46fb-8042-55410ad4ce1a5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2007年上海市高考数学理科试卷与答案一、填空题1、函数的定义域为(,3)(3,4)2、已知与,若两直线平行,则的值为 3、函数的反函数 4、方程的解是5、函数的最小正周期是6、已知,且,则的最大值为7、有数字,若从中任取三个数字,剩下两个数字为奇数的概率为8、已知双曲线,则以双曲线中心为焦点,以双曲线左焦点为顶点的抛物线方程为9、若为非零实数,则下列四个命题都成立: 若,则若,则则对于任意非零复数,上述命题仍然成立的序号是。,10、平面内两直线有三种位置关系:相交,平行与重合。已知两个相交平面与两直线,又知在内的射影为,在内的射影为。试写出与满足的条件,使之一定能成为是异面直线的充分条件 平
2、行,相交11、已知圆的方程,为圆上任意一点(不包括原点)。直线的倾斜角为弧度,则的图象大致为2sin 正弦函数二、选择题12、已知是实系数一元二次方程的两根,则的值为 A、 B、 C、 D、13、已知为非零实数,且,则下列命题成立的是A、 B、 C、 D、14、在直角坐标系中,分别是与轴,轴平行的单位向量,若直角三角形中,则的可能值有A、1个 B、2个 C、3个 D、4个15、已知是定义域为正整数集的函数,对于定义域内任意的,若成立,则成立,下列命题成立的是A、若成立,则对于任意,均有成立B、若成立,则对于任意的,均有成立C、若成立,则对于任意的,均有成立D、若成立,则对于任意的,均有成立三、
3、解答题16、体积为1的直三棱柱中,求直线与平面所成角。 17、在三角形中,求三角形的面积。先求出sinB ,cosB 再求出 可算出 S8/718、(背景省略)已知2002年全球太阳能年生产量为670兆瓦,年增长率为34%。在此后的四年里,增长率以每年2%的速度增长(例如2003年的年生产量增长率为36%)(1)求2006年的太阳能年生产量(精确到0.1兆瓦)(2)已知2006年太阳能年安装量为1420兆瓦,在此后的4年里年生产量保持42%的增长率,若2010年的年安装量不少于年生产量的95%,求4年内年安装量的增长率的最小值(精确到0.1%)1. 670*1.36*1.38*1.40*1.4
4、2=2499.82. 1420*(1+x%)4 2499.8*1.424 *0.95 求出最小值19、已知函数(1)判断的奇偶性(2)若在是增函数,求实数的范围1. a=0时候是偶函数 a不为0时候为非奇非偶函数2. a 1620、若有穷数列(是正整数),满足即(是正整数,且),就称该数列为“对称数列”。(1)已知数列是项数为7的对称数列,且成等差数列,试写出的每一项(2)已知是项数为的对称数列,且构成首项为50,公差为的等差数列,数列的前项和为,则当为何值时,取到最大值?最大值为多少?(3)对于给定的正整数,试写出所有项数不超过的对称数列,使得成为数列中的连续项;当时,试求其中一个数列的前2
5、008项和21、已知半椭圆与半椭圆组成的曲线称为“果圆”,其中,是对应的焦点。(1)若三角形是边长为1的等边三角形,求“果圆”的方程;(2)若,求的取值范围;(3)一条直线与果圆交于两点,两点的连线段称为果圆的弦。是否存在实数,使得斜率为的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有的值;若不存在,说明理由。2007年上海高考数学出的很灵活, 不少学生不适应哭了基础题还是很基础的10,11题有点难关键的17题 第二个大题卡住学生们了!造成整个试卷发挥糟糕起来 答案仅供参加,时间紧张一些学生考完要哭了 不过比去年不见得难了 平均分差不多下面是解立体几何一些简单的公式
6、定例: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内。 (1)判定直线在平面内的依据 (2)判定点在平面内的方法 公理2:如果两个平面有一个公共点,那它还有其它公共点,这些公共点的集合是一条直线 。 (1)判定两个平面相交的依据 (2)判定若干个点在两个相交平面的交线上 公理3:经过不在一条直线上的三点,有且只有一个平面。 (1)确定一个平面的依据 (2)判定若干个点共面的依据 推论1:经过一条直线和这条直线外一点,有且仅有一个平面。 (1)判定若干条直线共面的依据 (2)判断若干个平面重合的依据 (3)判断几何图形是平面图形的依据 推论2:经过两条相交直线,
7、有且仅有一个平面。 推论3:经过两条平行线,有且仅有一个平面。 立体几何 直线与平面 空 间 二 直 线 平行直线 公理4:平行于同一直线的两条直线互相平行 等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等。 异面直线 空 间 直 线 和 平 面 位 置 关 系 (1)直线在平面内有无数个公共点 (2)直线和平面相交有且只有一个公共点 (3)直线和平面平行没有公共点 立体几何 直线与平面 直线与平面所成的角 (1)平面的斜线和它在平面上的射影所成的锐角,叫做这条斜线与平面所成的角 (2)一条直线垂直于平面,定义这直线与平面所成的角是直角 (3)一条直线和平面平
8、行,或在平面内,定义它和平面所成的角是0度的角 三垂线定理 在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它和这条斜线垂直 三垂线逆定理 在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它和这条斜线的射影垂直 空间两个平面 两个平面平行 判定 性质 (1)如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行 (2)垂直于同一直线的两个平面平行 (1)两个平面平行,其中一个平面内的直线必平行于另一个平面 (2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行 (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 相交的两平面 二面角:从一条直
9、线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的线,这两个半平面叫二面角的面 二面角的平面角:以二面角的棱上任一点为端点,在两个面内分另作垂直棱的两条射线,这两条射线所成的角叫二面角的平面角 平面角是直角的二面角叫做直二面角 两平面垂直 判定 性质 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 (1)若二平面垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 (2)如果两个平面垂直,那么经过第一个平面内一点垂直于第二个平面的直线,在第一个平面内 立体几何 多面体、棱柱、棱锥 多面体 定义 由若干个多边形所围成的几何体叫做多面体。 棱柱 斜棱柱:侧棱不垂直于底面的棱柱
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年患者隐私保护协议与策划
- 2025年企业销售人员招聘合同范例
- 2025年企业人员临时借调合同范文
- 2025年居民安置过渡性协议
- 2025年个人流转养殖水面使用权协议
- 2025年共享发展市场拓展协议
- 2025年产业园区企业使用条款协议
- 2025年医疗设备更新协议文本
- 2025年医院食堂后勤服务合同标准格式
- 农业合作社土地使用权入股框架协议
- 广西2024年高考物理模拟试卷及答案1
- 2024年广东省中考历史真题(含解析)
- 垃圾填埋场项目经济效益和社会效益分析
- JGJ52-2006 普通混凝土用砂、石质量及检验方法标准
- 组织生活个人发言稿
- (高清版)JTST 273-2024 水运工程测量定额
- 电网工程劳务分包投标技术方案(技术标)
- 有理数总复习市公开课一等奖省赛课微课金奖课件
- 幼儿园安全园本培训
- 口腔疾病药物临床应用规范
- 第22课《陈涉世家》课件(共71张)
评论
0/150
提交评论