直角三角形的边角关系练习题_第1页
直角三角形的边角关系练习题_第2页
直角三角形的边角关系练习题_第3页
直角三角形的边角关系练习题_第4页
直角三角形的边角关系练习题_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一章 直角三角形的边角关系§1.1 从梯子的倾斜程度谈起(第一课时)四、随堂练习:1、如图,ABC是等腰直角三角形,你能根据图中所给数据求出tanC吗?2、如图,某人从山脚下的点A走了200m后到达山顶的点B,已知点B到山脚的垂直距离为55m,求山的坡度.(结果精确到0.001)3、若某人沿坡度i3:4的斜坡前进10米,则他所在的位置比原来的位置升高_米.4、菱形的两条对角线分别是16和12.较长的一条对角线与菱形的一边的夹角为,则tan_.5、如图,RtABC是一防洪堤背水坡的横截面图,斜坡AB的长为12 m,它的坡角为45°,为了提高该堤的防洪能力,现将背水坡改造成坡

2、比为1:1.5的斜坡AD,求DB的长.(结果保留根号) 五、课后练习:1、在RtABC中,C=90°,AB=3,BC=1,则tanA= _.2、在ABC中,AB=10,AC=8,BC=6,则tanA=_.3、在ABC中,AB=AC=3,BC=4,则tanC=_.4、在RtABC中,C是直角,A、B、C的对边分别是a、b、c,且a=24,c= 25,求tanA、tanB的值.5、若三角形三边的比是25:24:7,求最小角的正切值.6、如图,在菱形ABCD中,AEBC于E,EC=1,tanB=, 求菱形的边长和四边形AECD的周长.7、已知:如图,斜坡AB的倾斜角a,且tan=,现有一小

3、球从坡底A处以20cm/s 的速度向坡顶B处移动,则小球以多大的速度向上升高?§1.1从梯子的倾斜程度谈起(第二课时)四、随堂练习:1、在等腰三角形ABC中,AB=AC5,BC=6,求sinB,cosB,tanB.2、在ABC中,C90°,sinA,BC=20,求ABC的周长和面积.3、在ABC中.C=90°,若tanA=,则sinA= .4、已知:如图,CD是RtABC的斜边AB上的高,求证:BC2AB·BD.(用正弦、余弦函数的定义证明)五、课后练习:1、在RtABC中, C=90°,tanA=,则sinB=_,tanB=_.2、在RtAB

4、C中,C=90°,AB=41,sinA=,则AC=_,BC=_.3、在ABC中,AB=AC=10,sinC=,则BC=_.4、在ABC中,已知AC=3,BC=4,AB=5,那么下列结论正确的是( )A.sinA= B.cosA= C.tanA= D.cosB=5、如图,在ABC中,C=90°,sinA=,则等于( )A. B. C. D.6、RtABC中,C=90°,已知cosA=,那么tanA等( )A. B. C. D.7、在ABC中,C=90°,BC=5,AB=13,则sinA的值是A B C D8、已知甲、乙两坡的坡角分别为、, 若甲坡比乙坡更徒

5、些, 则下列结论正确的是( ) A.tan<tan B.sin<sin; C.cos<cos D.cos>cos9、如图,在RtABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA的是( ) A. B. C. D.10、某人沿倾斜角为的斜坡前进100m,则他上升的最大高度是( )m A. B.100sin C. D. 100cos11、如图,分别求,的正弦,余弦,和正切.12、在ABC中,AB=5,BC=13,AD是BC边上的高,AD=4.求:CD,sinC.13、在RtABC中,BCA=90°,CD是中线,BC=8,CD=5.求sinACD,cos

6、ACD和tanACD.14、在RtABC中,C=90°,sinA和cosB有什么关系?15、如图,已知四边形ABCD中,BC=CD=DB,ADB=90°,cosABD=.求:sABD:sBCD§1.2 30°、45°、60°角的三角函数值三、随堂练习1.计算:(1)sin60°-tan45°; (2)cos60°+tan60°;(3) sin45°+sin60°-2cos45°; ;(+1)-1+2sin30°-; (1+)0-1-sin30°1

7、+()-1;sin60°+; 2-3-(+)0-cos60°-.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m,扶梯的长度是多少?3如图为住宅区内的两幢楼,它们的高ABCD=30 m,两楼问的距离AC=24 m,现需了解甲楼对乙楼的采光影响情况.当太阳光与水平线的夹角为30°时,求甲楼的影子在乙楼上有多高?(精确到0.1 m,1.41,1.73)四、课后练习:1、RtABC中,则;2、在ABC中,若,,则,面积S ;3、在ABC中,AC:BC1:,AB6,B,ACBC4、等腰三角形底边与底边上的高的比是,则顶角为 ()(A)600 (B)900(C

8、)1200(D)15005、有一个角是的直角三角形,斜边为,则斜边上的高为 ()(A) (B) (C) (D)6、在中,若,则tanA等于( ) (A) (B) (C) (D)7、如果a是等边三角形的一个内角,那么cosa的值等于( ) (A) (B) (C) (D)18、某市在“旧城改造”中计划内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要( ) (A)450a元 (B)225a元 (C)150a元 (D)300a元9、计算:、 、 、 、 、·tan60° 、10、请设计一种方案计算tan15°的值。

9、7;1.4 船有触礁的危险吗三、随堂练习1.如图,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB5 m,现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?2.如图,水库大坝的截面是梯形ABCD.坝顶AD6m,坡长CD8m.坡底BC30m,ADC=135°. (1)求ABC的大小: (2)如果坝长100 m.那么建筑这个大坝共需多少土石料?(结果精确到0.01 m3)3如图,某货船以20海里时的速度将一批重要物资由A处运往正西方向的B处,经16小时的航行到达,到达后必须立即卸货.此时.接到气象部门通知,一台风中心正以40海里时的速度由A向北偏西60

10、°方向移动,距台风中心200海里的圆形区域(包括边界)均受到影响. (1)问:B处是否会受到台风的影响?请说明理由. (2)为避免受到台风的影响,该船应在多少小时内卸完货物?(供选用数据:1.4, 1.7)四、课后练习:1. 有一拦水坝是等腰楼形,它的上底是6米,下底是10米,高为2米,求此拦水坝斜坡的坡度和坡角.2.如图,太阳光线与地面成60°角,一棵大树倾斜后与地面成36°角, 这时测得大树在地面上的影长约为10米,求大树的长(精确到0.1米).3.如图,公路MN和公路PQ在点P处交汇,且QPN=30°,点A处有一所学校,AP=160米,假设拖拉机行

11、驶时,周围100米以内会受到噪声的影响,那么拖拉机在公路MN上沿PN的方向行驶时 ,学校是否会受到噪声影响?请说明理由.4.如图,某地为响应市政府“形象重于生命”的号召,在甲建筑物上从点A到点E挂一长为30米的宣传条幅,在乙建筑物的顶部D点测得条幅顶端A点的仰角为40°,测得条幅底端E的俯角为26°,求甲、乙两建筑物的水平距离BC的长(精确到0.1米).5.如图,小山上有一座铁塔AB,在D处测得点A的仰角为ADC=60°,点B的仰角为BDC=45°在E处测得A的仰角为E=30°,并测得DE=90米, 求小山高BC 和铁塔高AB(精确到0.1米)

12、.6.某民航飞机在大连海域失事,为调查失事原因,决定派海军潜水员打捞飞机上的黑匣子,如图所示,一潜水员在A处以每小时8海里的速度向正东方向划行,在A处测得黑匣子B在北偏东60°的方向,划行半小时后到达C处,测得黑匣子B在北偏东30 °的方向,在潜水员继续向东划行多少小时,距离黑匣子B最近,并求最近距离.7.以申办2010年冬奥会,需改变哈尔滨市的交通状况,在大直街拓宽工程中, 要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处测得树的顶点A的仰角为60°,树的底部B点的俯角为30°, 如图所示,问距

13、离B点8米远的保护物是否在危险区内?8.如图,某学校为了改变办学条件,计划在甲教学楼的正北方21米处的一块空地上(BD=21米),再建一幢与甲教学等高的乙教学楼(甲教学楼的高AB=20米),设计要求冬至正午时,太阳光线必须照射到乙教学楼距地面5米高的二楼窗口处, 已知该地区冬至正午时太阳偏南,太阳光线与水平线夹角为30°,试判断: 计划所建的乙教学楼是否符合设计要求?并说明理由.9.如图,两条带子,带子的宽度为2cm,带子b的宽度为1cm,它们相交成角,如果重叠部分的面积为4cm2,求的度数.1.5 测量物体的高度四、随堂练习4.某市为促进本地经济发展,计划修建跨河大桥,需要测出河的

14、宽度AB, 在河边一座高度为300米的山顶观测点D处测得点A,点B的俯角分别为=30°,=60°, 求河的宽度(精确到0.1米) 5.为了测量校园内一棵不可攀的树的高度, 学校数学应用实践小组做了如下的探索: 实践一:根据自然科学中光的反射定律,利用一面镜子和一根皮尺, 设计如图(1)的测量方案:把镜子放在离树(AB)8.7(米)的点E处,然后沿着直线BE 后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算 树AB的高度(精确到0.1米) 实践二:提供选用的测量工具有:皮尺一根;教学用三角板一副;长为2. 5米的标杆一

15、根;高度为1.5米的测角仪一架,请根据你所设计的测量方案, 回答下列问题:(1)在你设计的方案中,选用的测量工具是_.(2)在图(2)中画出你的测量方案示意图; (3)你需要测得示意图中哪些数据,并分别用a,b,c,等表示测得的数据_. (4)写出求树高的算式:AB=_. 6.在1:50000的地图上,查得A点在300m的等高线上,B点在400m的等高线上, 在地图上量得AB的长为2.5cm,若要在A、B之间建一条索道,那么缆索至少要多长? 它的倾斜角是多少?(说明:地图上量得的AB的长,就是A,B两点间的水平距离AB,由B向过A 且平行于地面的平面作垂线,垂足为B,连接AB,则A即是缆索的倾

16、斜角.)300350400AB 7、为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践一:根据自然科学中的反射定律,利用一面镜子和一根皮尺,设计如右示意图的测量方案:把镜子放在离树(AB)8.7米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量AB太阳光线CDE得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度(精确到0.1米)实践二:提供选用的测量工具有:皮尺一根;教学用三角板一副;长为2.5米的标杆一根;高度为1.5米的测角仪(能测量仰角、俯角的仪器)一架。请根据你所设计的测量方案,回答下列问题:(1)在你设计的方

17、案中,选用的测量工具是(用工 AB具的序号填写) (2)在右图中画出你的测量方案示意图;(3)你需要测得示意图中的哪些数据,并分别用a、b、c、等表示测得的数据: (4)写出求树高的算式:AB= 第一章回顾与思考1、等腰三角形的一腰长为,底边长为,则其底角为( )A B C D 2、某水库大坝的横断面是梯形,坝内斜坡的坡度,坝外斜坡的坡度,则两个坡角的和为 ( )A B C D 3、如图,在矩形ABCD中,DEAC于E,设ADE=,且, AB = 4, 则AD的长为( ) (A)3 (B) (C) (D)4、在课外活动上,老师让同学们做一个对角线互相垂直的等腰梯形形状的风筝,其面积为450,则

18、对角线所用的竹条至少需( ) (A) (B)30cm (C)60cm (D)5、如果是锐角,且,那么 º6、如图,在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是 米7、如图,P是的边OA上一点, 且P点坐标为(3,4),则= ,=_. 8、支离旗杆20米处的地方用测角仪测得旗杆顶的仰角为,如果测角仪高为1.5米那么旗杆的有为 米(用含的三角比表示)9、在Rt中AB,CM是斜边AB上的中线,将沿直线CM折叠,点A落在点D处,如果CD恰好与AB垂直,那么A等于 度10、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角

19、为,路基高度为5.8米,求路基下底宽(精确到0.1米). 11、“曙光中学”有一块三角形形状的花圃ABC,现可直接测量到AC = 40米,BC = 25米,请你求出这块花圃的面积.12、如图,在小山的东侧A处有一热气球,以每分钟28米的速度沿着与垂直方向夹角为的方向飞行,半小时后到达C处,这时气球上的人发现,在A处的正西方向有一处着火点B,5分钟后,在D处测得着火点B的俯角是,求热气球升空点A与着火点B的距离13、如图,一勘测人员从B点出发,沿坡角为的坡面以5千米/时的速度行至D点,用了12分钟,然后沿坡角为的坡面以3千米/时的速度到达山顶A点,用了10分钟.求山高(即AC的长度)及A、B 两点的水平距离(即BC的长度)(精确到0.01千米).14、为申办2010年冬奥会,须改变哈尔滨市的交通状况。在大直街拓宽

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论