版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、上海历年中考数学压轴题复习2001年上海市数学中考27已知在梯形ABCD中,ADBC,ADBC,且AD5,ABDC2(1)如图8,P为AD上的一点,满足BPCA图8求证;ABPDPC求AP的长(2)如果点P在AD边上移动(点P与点A、D不重合),且满足BPEA,PE交直线BC于点E,同时交直线DC于点Q,那么当点Q在线段DC的延长线上时,设APx,CQy,求y关于x的函数解析式,并写出函数的定义域;当CE1时,写出AP的长(不必写出解题过程)27(1)证明: ABP180°AAPB,DPC180°BPCAPB,BPCA, ABPDPC 在梯形ABCD中,ADBC,ABCD,
2、 AD ABPDPC解:设APx,则DP5x,由ABPDPC,得,即,解得x11,x24,则AP的长为1或4(2)解:类似(1),易得ABPDPQ, 即,得,1x4AP2或AP3(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径)上海市2002年中等学校高中阶段招生文化考试27操作:将一把三角尺放在边长为1的正方形ABCD上
3、,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q图5图6图7探究:设A、P两点间的距离为x(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,PCQ是否可能成为等腰三角形?如果可能,指出所有能使PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)五、(本大题只有1题,满分12分,(1)、(2)、
4、(3)题均为4分)27图1 图2 图3(1)解:PQPB(1分)证明如下:过点P作MNBC,分别交AB于点M,交CD于点N,那么四边形AMND和四边形BCNM都是矩形,AMP和CNP都是等腰直角三角形(如图1)NPNCMB(1分)BPQ90°,QPNBPM90° 而BPMPBM90°,QPNPBM(1分)又QNPPMB90°,QNPPMB(1分)PQPB(2)解法一由(1)QNPPMB得NQMPAPx,AMMPNQDN,BMPNCN1,CQCDDQ12·1得SPBCBC·BM×1×(1)x(1分)SPCQ
5、CQ·PN×(1)(1)x2(1分)S四边形PBCQSPBCSPCQx21即yx21(0x)(1分,1分)解法二作PTBC,T为垂足(如图2),那么四边形PTCN为正方形PTCBPN又PNQPTB90°,PBPQ,PBTPQNS四边形PBCQS四边形PBTS四边形PTCQS四边形PTCQSPQNS正方形PTCN(2分)CN2(1)2x21yx21(0x)(1分)(3)PCQ可能成为等腰三角形当点P与点A重合,点Q与点D重合,这时PQQC,PCQ是等腰三角形,此时x0(1分)当点Q在边DC的延长线上,且CPCQ时,PCQ是等腰三角形(如图3)(1分)解法一此时,QN
6、PM,CPx,CNCP1 CQQNCN(1)1当x1时,得x1(1分)解法二此时CPQPCN22.5°,APB90°22.5°67.5°,ABP180°(45°67.5°)67.5°,得APBABP,APAB1,x1(1分)上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD中,AB1,弧AC是点B为圆心,AB长为半径的圆的一段弧。点E是边AD上的任意一点(点E与点A、D不重合),过E作弧AC所在圆的切线,交边DC于点F,G为切点: (1)当DEF45º时,求证:点G为线段EF的中点;(2
7、)设AEx,FCy,求y关于x的函数解析式,并写出函数的定义域;(3)将DEF沿直线EF翻折后得DEF,如图,当EF时,讨论ADD与EDF是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由。2004年上海市中考数学试卷27、(2004上海)数学课上,老师提出:如图,在平面直角坐标系中,O为坐标原点,A点的坐标为(1,0),点B在x轴上,且在点A的右侧,AB=OA,过点A和B作x轴的垂线,分别交二次函数y=x2的图象于点C和D,直线OC交BD于点M,直线CD交y轴于点H,记点C、D的的横坐标分别为xC、xD,点H的纵坐标为yH同学发现两个结论:SCMD:S梯形ABMC=2
8、:3 数值相等关系:xCxD=yH(1)请你验证结论和结论成立;(2)请你研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t0)”,其他条件不变,结论是否仍成立(请说明理由);(3)进一步研究:如果上述框中的条件“A的坐标(1,0)”改为“A的坐标(t,0)(t0)”,又将条件“y=x2”改为“y=ax2(a0)”,其他条件不变,那么xC、xD与yH有怎样的数值关系?(写出结果并说明理由)考点:二次函数综合题。专题:压轴题。分析:(1)可先根据AB=OA得出B点的坐标,然后根据抛物线的解析式和A,B的坐标得出C,D两点的坐标,再依据C点的坐标求出直线OC的解析式进而可求
9、出M点的坐标,然后根据C、D两点的坐标求出直线CD的解析式进而求出D点的坐标,然后可根据这些点的坐标进行求解即可;(2)(3)的解法同(1)完全一样解答:解:(1)由已知可得点B的坐标为(2,0),点C坐标为(1,1),点D的坐标为(2,4),由点C坐标为(1,1)易得直线OC的函数解析式为y=x,故点M的坐标为(2,2),所以SCMD=1,S梯形ABMC=32所以SCMD:S梯形ABMC=2:3,即结论成立设直线CD的函数解析式为y=kx+b,则&k+b=1&2k+b=4,解得&k=3&b=2所以直线CD的函数解析式为y=3x2由上述可得,点H的坐标为(0,2
10、),yH=2因为xCxD=2,所以xCxD=yH,即结论成立;(2)(1)的结论仍然成立理由:当A的坐标(t,0)(t0)时,点B的坐标为(2t,0),点C坐标为(t,t2),点D的坐标为(2t,4t2),由点C坐标为(t,t2)易得直线OC的函数解析式为y=tx,故点M的坐标为(2t,2t2),所以SCMD=t3,S梯形ABMC=32t3所以SCMD:S梯形ABMC=2:3,即结论成立设直线CD的函数解析式为y=kx+b,则&tk+b=t2&2tk+b=4t2,解得&k=3t&b=2t2所以直线CD的函数解析式为y=3tx2t2;由上述可得,点H的坐标为(0,
11、2t2),yH=2t2因为xCxD=2t2,所以xCxD=yH,即结论成立;(3)由题意,当二次函数的解析式为y=ax2(a0),且点A坐标为(t,0)(t0)时,点C坐标为(t,at2),点D坐标为(2t,4at2),设直线CD的解析式为y=kx+b,则:&tk+b=at2&2tk+b=4at2,解得&k=3at&b=2at2所以直线CD的函数解析式为y=3atx2at2,则点H的坐标为(0,2at2),yH=2at2因为xCxD=2t2,所以xCxD=1ayH点评:本题主要考查了二次函数的应用、一次函数解析式的确定、图形面积的求法、函数图象的交点等知识点20
12、05年上海市初中毕业生统一学业考试数学试卷1、 (本题满分12分,每小题满分各为4分)在ABC中,ABC90°,AB4,BC3,O是边AC上的一个动点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EPED,交射线AB于点P,交射线CB于点F。(1) 如图8,求证:ADEAEP;(2) 设OAx,APy,求y关于x的函数解析式,并写出它的定义域;(3) 当BF1时,求线段AP的长.J2006 年上海市初中毕业生统一学业考试数学试卷25(本题满分14分,第(1)小题满分4分,第(2)小题满分7分,第(3)小题满分3分)已知点P在线段AB上,点O在线段AB的延长线上。以点O
13、为圆心,OP为半径作圆,点C是圆O上的一点。(1) 如图9,如果AP=2PB,PB=BO。求证:CAOBCO;(2) 如果AP=m(m是常数,且m1),BP=1,OP是OA、OB的比例中项。当点C在圆O上运动时,求AC:BC的值(结果用含m的式子表示);(3) 在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围。图9APBOC25(1)证明:,(2分),(1分),(1分)(2)解:设,则,是,的比例中项,(1分)得,即(1分)(1分)是,的比例中项,即,(1分)设圆与线段的延长线相交于点,当点与点,点不重合时,(1分)(1分);当点与点或点重合时,可
14、得,当点在圆上运动时,;(1分)(3)解:由(2)得,且,圆和圆的圆心距,显然,圆和圆的位置关系只可能相交、内切或内含当圆与圆相交时,得,;(1分)当圆与圆内切时,得;(1分)当圆与圆内含时,得(1分)2007年上海市初中毕业生统一学业考试25(本题满分14分,第(1)小题满分4分,第(2),(3)小题满分各5分)已知:,点在射线上,(如图10)为直线上一动点,以为边作等边三角形(点按顺时针排列),是的外心(1)当点在射线上运动时,求证:点在的平分线上;(2)当点在射线上运动(点与点不重合)时,与交于点,设,求关于的函数解析式,并写出函数的定义域;(3)若点在射线上,圆为的内切圆当的边或与圆相
15、切时,请直接写出点与点的距离图10备用图25(1)证明:如图4,连结,是等边三角形的外心,1分圆心角当不垂直于时,作,垂足分别为由,且,1分1分点在的平分线上1分当时,即,点在的平分线上综上所述,当点在射线上运动时,点在的平分线上图4图5(2)解:如图5,平分,且,1分由(1)知,1分1分定义域为:1分(3)解:如图6,当与圆相切时,;2分如图7,当与圆相切时,;1分如图8,当与圆相切时,2分图6图7图82008年上海市中考数学试卷25(本题满分14分,第(1)小题满分5分,第(2)小题满分4分,第(3)小题满分5分)已知,(如图13)是射线上的动点(点与点不重合),是线段的中点(1)设,的面
16、积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;(3)联结,交线段于点,如果以为顶点的三角形与相似,求线段的长BADMEC图13BADC备用图25解:(1)取中点,联结,为的中点,(1分)又,(1分),得;(2分)(1分)(2)由已知得(1分)以线段为直径的圆与以线段为直径的圆外切,即(2分)解得,即线段的长为;(1分)(3)由已知,以为顶点的三角形与相似,又易证得(1分)由此可知,另一对对应角相等有两种情况:;当时,易得得;(2分)当时,又,即,得解得,(舍去)即线段的长为2(2分)综上所述,所求线段的长为8或22009年上海市初中
17、毕业统一学业考试25(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知为线段上的动点,点在射线上,且满足(如图8所示)(1)当,且点与点重合时(如图9所示),求线段的长;(2)在图8中,联结当,且点在线段上时,设点之间的距离为,其中表示的面积,表示的面积,求关于的函数解析式,并写出函数定义域;ADPCBQ图8DAPCB(Q)图9图10CADPBQ(3)当,且点在线段的延长线上时(如图10所示),求的大小(2009年上海25题解析) 解:(1)AD=2,且Q点与B点重合,根据题意,PBC=PDA,因为A=90。 PQ/PC=AD/AB=1,所以:PQC为等腰
18、直角三角形,BC=3,所以:PC=3 /2,(2)如图:添加辅助线,根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H,h,则:S1=(2-x)H/2=(2*3/2)/2-(x*H/2)-(3/2)*(2-h)/2S2=3*h/2 因为两S1/S2=y,消去H,h,得:Y=-(1/4)*x+(1/2), 定义域:当点P运动到与D点重合时,X的取值就是最大值,当PC垂直BD时,这时X=0,连接DC,作QD垂直DC,由已知条件得:B、Q、D、C四点共圆,则由圆周角定理可以推知:三角形QDC相似于三角形ABDQD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t,由勾
19、股定理得:直角三角形AQD中:(3/2)2+(2-x)2=(3t)2直角三角形QBC中:32+x2=(5t)2整理得:64x2-400x+301=0 (8x-7)(8x-43)=0 得 x1=7/8 x2=(43/8)>2(舍去) 所以函数:Y=-(1/4)*x+1/2的定义域为0,7/8(3)因为:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ垂直于PC,与AB交于Q点,则:B,Q,P,C四点共圆,由圆周角定理,以及相似三角形的性质得:PQ/PC=AD/AB,又由于PQ/PC=AD/AB 所以,点Q与点Q重合,所以角QPC=90。 ADPCBQ图8DAPCB(Q)图9
20、图10CADPBQ2010年上海市初中毕业统一学业考试数学卷25如图9,在RtABC中,ACB90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连结DE并延长,与线段BC的延长线交于点P.(1)当B30°时,连结AP,若AEP与BDP相似,求CE的长;(2)若CE=2,BD=BC,求BPD的正切值;(3)若,设CE=x,ABC的周长为y,求y关于x的函数关系式.图9 图10(备用) 图11(备用)2011年上海市初中毕业统一学业考试数学卷2011年上海市初中毕业统一学业考试数学卷25(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)在RtABC中,ACB90°,BC30,AB50点P是AB边上任意一点,直线PEAB,与边AC或BC相交于E点M在线段AP上,点N在线段BP上,EMEN,(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度软件开发合同功能扩展协议3篇
- 应急避险中重要设施设备的应用研究及其实践探讨
- 教育行业的能力模型构建与应用研究
- 小班孩子自主进餐的实践与思考
- 教育评估与反馈在班级管理中的运用
- 家庭教育中健康生活习惯的培养
- 家校合作与活动策划探讨
- 学校与幼儿园未来发展趋势的规划设计思考
- 2《烛之武退秦师》说课稿 2023-2024学年统编版高中语文必修下册
- Unit 1 Science and Scientists Learning about Language (2) 说课稿-2024-2025学年高中英语人教版(2019)选择性必修第二册
- 福建省厦门市2023-2024学年高二上学期期末考试语文试题(解析版)
- 课文背书统计表
- 三年级语文下册教案-14 蜜蜂3-部编版
- 苏教版小学数学四年级下册全册教案
- DB51T2939-2022 彩灯(自贡)制作工艺通用规范
- 押金收据条(通用版)
- 药理治疗中枢神经系统退行性疾病药.pptx
- 强三基反三违除隐患促安全百日专项行动实施方案
- 新人教版七年级数学上册全册专项训练大全
- 标准预防--ppt课件
- 压力管道氩电联焊作业指导书
评论
0/150
提交评论