算法初步课件 13 算法案例--进位制_第1页
算法初步课件 13 算法案例--进位制_第2页
算法初步课件 13 算法案例--进位制_第3页
算法初步课件 13 算法案例--进位制_第4页
算法初步课件 13 算法案例--进位制_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、祁阳一中高一数学备课组祁阳一中高一数学备课组三维目标三维目标(a a)知识与技能)知识与技能了解各种进位制与十进制之间转换的规律,会利了解各种进位制与十进制之间转换的规律,会利用各种进位制与十进制之间的联系进行各种进位制之用各种进位制与十进制之间的联系进行各种进位制之间的转换。间的转换。(b b)过程与方法)过程与方法学习各种进位制转换成十进制的计算方法,研究学习各种进位制转换成十进制的计算方法,研究十进制转换为各种进位制的除十进制转换为各种进位制的除k k去余法,并理解其中的去余法,并理解其中的数学规律。数学规律。(c c)情感态度与价值观)情感态度与价值观领悟十进制,二进制的特点,了解计算

2、机的电路领悟十进制,二进制的特点,了解计算机的电路与二进制的联系,进一步认识到计算机与数学的联系与二进制的联系,进一步认识到计算机与数学的联系. .教学重难点教学重难点重点:各进位制表示数的方法及各进位制重点:各进位制表示数的方法及各进位制之间的转换之间的转换难点:除难点:除k k去余法的理解以及各进位制之去余法的理解以及各进位制之间转换的程序框图的设计间转换的程序框图的设计学习方法学习方法在学习各种进位制特点的同时探讨进位制在学习各种进位制特点的同时探讨进位制表示数与十进制表示数的区别与联系,熟悉各表示数与十进制表示数的区别与联系,熟悉各种进位制表示数的方法,从而理解十进制转换种进位制表示数

3、的方法,从而理解十进制转换为各种进位制的除为各种进位制的除k k去余法。去余法。 问题问题11我们常见的数字都是十进制的我们常见的数字都是十进制的, ,但是并但是并不是生活中的每一种数字都是十进制的不是生活中的每一种数字都是十进制的. .比如比如时间和角度的单位用六十进位制时间和角度的单位用六十进位制, ,电子计算机电子计算机用的是二进制用的是二进制. .那么什么是进位制那么什么是进位制? ?不同的进位不同的进位制之间又有什么联系呢制之间又有什么联系呢? ?进位制是人们为了计数和运算的方便而进位制是人们为了计数和运算的方便而约定的一种记数系统,约定满二进一约定的一种记数系统,约定满二进一, ,

4、就是二就是二进制进制; ;满十进一满十进一, ,就是十进制就是十进制; ;满十六进一满十六进一, ,就就是十六进制是十六进制; ;等等等等. . “满几进一满几进一”,就是几进制就是几进制,几进制的几进制的基数基数就是几就是几.可使用数字符号的个数称为基数可使用数字符号的个数称为基数. .基数基数都是大于都是大于1 1的整数的整数. . 如二进制可使用的数字有如二进制可使用的数字有0和和1,基数是基数是2; 十进制可使用的数字有十进制可使用的数字有0,1,2,8,9等十个等十个数字数字,基数是基数是10; 十六进制可使用的数字或符号有十六进制可使用的数字或符号有09等等10个数字以及个数字以及

5、AF等等6个字母个字母(规定字母规定字母AF对应对应1015),十六进制的基数是十六进制的基数是16.注意注意: :为了区分不同的进位制为了区分不同的进位制, ,常在数字常在数字的右下脚标明基数的右下脚标明基数,. ,. 如如111001111001(2)(2)表示二进制数表示二进制数,34,34(5)(5)表示表示5 5进制数进制数. .十进制数一般不标注基数十进制数一般不标注基数.问题问题2十进制数十进制数3721中的中的3表示表示3个千个千,7表示表示7个百个百,2表示表示2个十个十,1表示表示1个一个一,从而它可以写成从而它可以写成下面的形式下面的形式:3721=3103+7102+2

6、101+1100.想一想二进制数想一想二进制数1011(2)可以类似的写成什可以类似的写成什么形式么形式?1011(2)=123+022+121+120.同理同理:3421(5)=353+452+251+150.C7A16(16)=12164+7163+10162 +1161+6160.一般地一般地,若若k是一个大于是一个大于1的整数的整数,那么以那么以k为为基数的基数的k进制数可以表示为一串数字连写在一进制数可以表示为一串数字连写在一起的形式起的形式anan-1a1a0(k) (0ank,0an-1,a1,a0k)意思是意思是:(1):(1)第一个数字第一个数字a an n不能等于不能等于0

7、;0;(2)(2)每一个数字每一个数字a an n,a,an-1n-1, ,a,a1 1,a,a0 0都须小于都须小于k.k.k进制的数也可以表示成不同位上数字与进制的数也可以表示成不同位上数字与基数基数k的幂的乘积之和的形式的幂的乘积之和的形式,即即anan-1a1a0(k)=ankn+an-1kn-1 +a1k1+a0k0 .注意这是一注意这是一个个n+1位数位数.问题问题3二进制只用二进制只用0和和1两个数字两个数字,这正好这正好与电路的通和断两种状态相对应与电路的通和断两种状态相对应,因此因此计计算机内部都使用二进制算机内部都使用二进制.计算机在进行数计算机在进行数的运算时的运算时,先

8、把接受到的数转化成二进制先把接受到的数转化成二进制数进行运算数进行运算,再把运算结果转化为十进制再把运算结果转化为十进制数输出数输出.那么二进制数与十进制数之间是如那么二进制数与十进制数之间是如何转化的呢何转化的呢?例例1:把二进制数把二进制数110011(2)化为十进制数化为十进制数.分析分析:先把二进制数写成不同位上数字与先把二进制数写成不同位上数字与2的幂的乘积之和的形式的幂的乘积之和的形式,再按照十进制数的运算再按照十进制数的运算规则计算出结果规则计算出结果.解解:110011(2) =125+124+023+022+121+120 =132+116+12+1=51. 问题问题4你会把

9、三进制数你会把三进制数10221(3)化为十进制数吗化为十进制数吗?解解:10221(3)=134+033+232+231+130 =81+18+6+1=106. k进制数转化为十进制数的方法进制数转化为十进制数的方法先把先把k进制的数表示成不同位上数字进制的数表示成不同位上数字与基数与基数k的幂的乘积之和的形式的幂的乘积之和的形式,即即anan-1a1a0(k)=ankn+an-1kn-1+a1k1+a0k0 .再按照十进制数的运算规则计算出结果再按照十进制数的运算规则计算出结果.(5)2341(3)121练习:将练习:将 、 转化成十进制数转化成十进制数。例例2:把把89化为二进制的数化为

10、二进制的数.分析分析:把把89化为二进制的数化为二进制的数,需想办法将需想办法将89先写成如下形式先写成如下形式89=an2n+an-12n-1+a121+a020 .89=64+16+8+1=126+025+124 +123+022+021+120 =1011001(2).但如果数太大但如果数太大,我们是无法这样凑出来的我们是无法这样凑出来的,怎么办怎么办?89=442+1, 44=222+0, 22=112+0, 11=52+1, 5=22+1, 2=12+0, 1=02+1, 89=442+1, 44=222+0, 22=112+0, 11=52+1, 5=22+1, 89=442+1,

11、 =(222+0)2+1 =(112+0)2+0)2+1 =(52+1)2+0)2+0)2+1 =(22+1)2+1)2+0) 2+0)2+1 =(12)+0)2+1)2+1)2+0) 2+0)2+1=126+025+124 +123+022+021+120=1011001(2).可以用可以用2连续去除连续去除89或所得商或所得商(一直到商为一直到商为0为止为止),然后取余数然后取余数-除除2取余法取余法.2=12+0, 1=02+1, 44 1例例2:把把89化为二进制的数化为二进制的数.我们可以用下面的除法算式表示除我们可以用下面的除法算式表示除2取余法取余法:289 余数余数222 02

12、11 025 122 121 020 1把算式中各步所得的余数把算式中各步所得的余数从下到上排列从下到上排列,得到得到89=1011001(2).这种方法也可以推广为把这种方法也可以推广为把十进制数化为十进制数化为k进制数的进制数的算法算法,称为称为除除k取余法取余法.例例3:把把89化为五进制的数化为五进制的数.解解:以以5作为除数作为除数,相应的除法算式为相应的除法算式为:17 4589 余数余数53 250 3 89=324(5).问题问题5你会把三进制数你会把三进制数10221(3)化为二进制数吗化为二进制数吗?解解:第一步第一步:先把三进制数化为十进制数先把三进制数化为十进制数:10221(3)=134+033+232+231+130 =81+18+6+1=106. 第二步第二步:再把十进制数化为二进制数再把十进制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论