二次根式全章导学案_第1页
二次根式全章导学案_第2页
二次根式全章导学案_第3页
二次根式全章导学案_第4页
二次根式全章导学案_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、16.1.1 二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。2、掌握二次根式有意义的条件。3、掌握二次根式的基本性质:和学习重点、难点重点:二次根式有意义的条件;二次根式的性质难点:综合运用性质和。三、学习过程(一)复习引入:(1)已知x2 = a,那么a是x的_; x是a的_, 记为_, a一定是_数。(2)4的算术平方根为2,用式子表示为 =_;正数a的算术平方根为_,0的算术平方根为_;式子的意义是 。(二)自主学习自学课本第2页例前的内容,完成下面的问题:1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?,2、计算 : (1) (2) (3)

2、 (4)根据计算结果,你能得出结论: ,其中,的意义是 。3、当a为正数时指a的 ,而0的算术平方根是 ,负数 ,只有非负数a才有算术平方根。所以,在二次根式中,字母a必须满足 , 才有意义。(三)合作探究1、学生自学课本第2页例题后,模仿例题的解答过程合作完成练习 : x取何值时,下列各二次根式有意义? 2、(1)若有意义,则a的值为_(2)若在实数范围内有意义,则x为( )。A.正数 B.负数 C.非负数 D.非正数(四)当党训练(一)填空题:1、 =_;2、 在实数范围内因式分解:(1)x2-9= x2 - ( )2= (x+ _)(x-_)(2) x2 - 3 = x2 - ( ) 2

3、 = (x+ _) (x- _) 3、下列各式中,正确的是( )。A. = B C D5、 如果等式= x成立,那么x为( )。A x0; B.x=0 ; C.x<0; D.x06、 若,则 = 。7、分解因式:X4 - 4X2 + 4= _.(五)小结二次根式(2)一、学习目标1、掌握二次根式的基本性质:2、能利用上述性质对二次根式进行化简.学习重点、难点重点:二次根式的性质难点:综合运用性质进行化简和计算。二、学习过程(一)复习引入:(1)什么是二次根式,它有哪些性质?(2)二次根式有意义,则x 。(3)在实数范围内因式分解:x2-6= x2 - ( )2= (x+ _)(x-_)(

4、二)自主学习自学课本第3页的内容,完成下面的题目:1、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 2、计算: 观察其结果与根号内幂底数的关系,归纳得到:当 3、计算: 当 (三)合作交流1、归纳总结将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质:2、化简下列各式: 3、请大家思考、讨论二次根式的性质与有什么区别与联系。(四)当堂训练:1、填空:(1)、-=_.(2)、= 2、已知2x3,化简: 3、 已知0 x1,化简:4、 边长为a的正方形桌面,正中间有一个边长为的正方形方孔若沿图中虚线锯开,可以拼成一个新的正方形桌面你会拼吗?试求出新的正方形边长(五)小结

5、16.2.1二次根式的乘法一、学习目标1、掌握二次根式的乘法法则和积的算术平方根的性质。2、熟练进行二次根式的乘法运算及化简。学习重点、难点重点: 掌握和应用二次根式的乘法法则和积的算术平方根的性质。难点: 正确依据二次根式的乘法法则和积的算术平方根的性质进行二次根式的化简。二、学习过程(一)复习回顾1、计算:(1)×=_ =_(2) × =_ =_2、根据上题计算结果,用“>”、“<”或“=”填空:(1)×_(2)×_(二)自主学习自学课本第56页“积的算术平方根”前的内容,完成下面的题目:1、用计算器填空:(1)×_ (2)&#

6、215;_(3)×_ (4)×_2、由上题并结合知识回顾中的结论,你发现了什么规律?能用数学表达式表示发现的规律吗?3、二次根式的乘法法则是: (三)合作交流1、自学课本6页例1后,依照例题进行计算:(1)× (2)2×3 (3)· (4)··2、自学课本第67页内容,完成下列问题:(1)用式子表示积的算术平方根的性质: 。(2)化简: (四)当堂训练1、选择题(1)等式成立的条件是( ) Ax1 Bx-1 C-1x1 Dx1或x-1(2)下列各等式成立的是( )A4×2=8 B5×4=20 C4

7、5;3=7 D5×4=20(3)二次根式的计算结果是( ) A2 B-2 C6 D122、化简: (1); (2);3、计算: (1); (2);(五)小结二次根式的除法一、学习目标1、掌握二次根式的除法法则和商的算术平方根的性质。2、能熟练进行二次根式的除法运算及化简。学习重点、难点重点: 掌握和应用二次根式的除法法则和商的算术平方根的性质。难点: 正确依据二次根式的除法法则和商的算术平方根的性质进行二次根式的化简。二、学习过程(一)复习回顾1、计算: (1)3×(-4) (2) (二)自主学习自学课本第8页第9页内容,完成下面的题目:1、由“知识回顾4题”可得规律:_

8、_ _ 2、利用计算器计算填空: (1)=_(2)=_(3)=_规律:_ _ _3、根据大家的练习和解答,我们可以得到二次根式的除法法则: 。 把这个法则反过来,得到商的算术平方根性质: 。(三)合作交流 1、 自学课本例4,仿照例题完成下面的题目: 计算:(1) (2) 2、自学课本例4,仿照例题完成下面的题目:化简:(1) (2) (四)当堂训练1、选择题 (1)计算的结果是( ) A B C D (2)化简的结果是( ) A- B- C- D-2、计算: (1) (2) (3) (4) (五)小结最简二次根式一、学习目标1、理解最简二次根式的概念。2、把二次根式化成最简二次根式3、熟练进

9、行二次根式的乘除混合运算。学习重点、难点重点:最简二次根式的运用。难点:会判断二次根式是否是最简二次根式和二次根式的乘除混合运算。二、学习过程(一)复习回顾1、化简(1) (2)2、结合上题的计算结果,回顾前两节中利用积、商的算术平方根的性质化简二次根式达到的要求是什么?(二)自主学习自学课本第9页内容,完成下面的题目:1、满足于 , 的二次根式称为最简二次根式.2、化简:(1) (2) (三)合作交流1、计算: 2、比较下列数的大小(1)与 (2)3、如图,在RtABC中,C=90°,AC=3cm,BC=6cm,求AB的长 (四)当堂训练1、选择题(1)如果(y>0)是二次根

10、式,化为最简二次根式是( ) A(y>0) B(y>0) C(y>0) D以上都不对(2)化简二次根式的结果是 A、 B、- C、 D、- 2、填空:(1)化简=_(x0)(2)已知,则的值等于_. 3、计算:(1) (2) (五)小结16.3.1二次根式的加减法一、学习目标1、了解同类二次根式的定义。2、能熟练进行二次根式的加减运算。学习重点、难点重点:二次根式加减法的运算。难点:快速准确进行二次根式加减法的运算。二、学习过程(一)复习回顾1、什么是同类项?2、如何进行整式的加减运算?3、计算:(1)2x-3x+5x (2)(二)自主学习自学课本第1011页内容,完成下面的

11、题目:1、试观察下列各组式子,哪些是同类二次根式:(1) (2)(3) (4)从中你得到: 。2、自学课本例1,例2后,仿例计算:(1)+ (2)+2+3 (3)3-9+3 通过计算归纳:进行二次根式的加减法时,应 。(四)合作交流,展示反馈小组交流结果后,再合作计算,看谁做的又对又快!限时6分钟(1) (2) (3) (4)(四)当堂训练1、选择题(1)二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和(2)下列各组二次根式中,是同类二次根式的是( )A与 B与C与 D与2、计算: (1)(2)(五)小结二次根式的混合运算一、学习目标熟练应用二次根式的加减乘除法法则及乘法公式

12、进行二次根式的混合运算。学习重点、难点重点:熟练进行二次根式的混合运算。难点:混合运算的顺序、乘法公式的综合运用。二、学习过程(一)复习回顾:填空 (1)整式混合运算的顺序是: 。(2)二次根式的乘除法法则是: 。(3)二次根式的加减法法则是: 。(4)写出已经学过的乘法公式: (二)自主学习计算:(1)·· (2)(3)(三)合作交流1、探究计算:(1)()× (2)2、自学课本11页例4后,依照例题探究计算:(1) (2)(四)当堂训练1、计算:(1) (2)(3)(a>0,b>0)(4)2、已知,求的值。(五)小结16.4二次根式复习一、学习目标1、了解二次根式的定义,掌握二次根式有意义的条件和性质。2、熟练进行二次根式的乘除法运算。3、理解同类二次根式的定义,熟练进行二次根式的加减法运算。4、了解最简二次根式的定义,能运用相关性质进行化简二次根式。学习重点、难点重点:二次根式的计算和化简。难点:二次根式的混合运算,正确依据相关性质化简二次根式。二、复习过程(一)自主复习自学课本第13页“小结”的内容,记住相关知识,完成练习:1若a0,a的平方根可表示为_a的算术平方根可表示_2当a_时,有意义,当a_时,没有意义。345(二)合作交

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论