![人工智能打印_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/2d87fa9d-4fa9-4537-8b27-6e2d753a47d8/2d87fa9d-4fa9-4537-8b27-6e2d753a47d81.gif)
![人工智能打印_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/2d87fa9d-4fa9-4537-8b27-6e2d753a47d8/2d87fa9d-4fa9-4537-8b27-6e2d753a47d82.gif)
![人工智能打印_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/2d87fa9d-4fa9-4537-8b27-6e2d753a47d8/2d87fa9d-4fa9-4537-8b27-6e2d753a47d83.gif)
![人工智能打印_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/2d87fa9d-4fa9-4537-8b27-6e2d753a47d8/2d87fa9d-4fa9-4537-8b27-6e2d753a47d84.gif)
![人工智能打印_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/20/2d87fa9d-4fa9-4537-8b27-6e2d753a47d8/2d87fa9d-4fa9-4537-8b27-6e2d753a47d85.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1. 什么是人类智能?它有哪些特征或特点?定义:人类所具有的智力和行为能力。 特点:主要体现为感知能力、记忆与思维能力、归纳与演绎能力、学习能力以及行为能力。 2. 人工智能是何时、何地、怎样诞生的?解:人工智能于 1956 年夏季在美国 Dartmouth 大学诞生。此时此地举办的关于用机器模拟人类智能问题的研讨会,第一次使用“人工智能”这一术语,标志着人工智能学科的诞生。 3. 什么是人工智能?它的研究目标是什么?定义:用机器模拟人类智能。 研究目标:用计算机模仿人脑思维活动,解决复杂问题;从实用的观点来看,以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 4. 人工智能的发展经
2、历了哪几个阶段?解:第一阶段:孕育期(1956 年以前);第二阶段:人工智能基础技术的研究和形成(19561970 年) ;第三阶段:发展和实用化阶段(19711980 年);第四阶段:知识工程和专家系统(1980 年至今) 。 5. 人工智能研究的基本内容有哪些? 解:知识的获取、表示和使用。6. 人工智能有哪些主要研究领域?解:问题求解、专家系统、机器学习、模式识别、自动定论证明、自动程序设计、自然语言理解、机器人学、人工神经网络和智能检索等。 7 什么是知识?有哪几种分类方法? 答:知识是人们对客观事物(包括自然的和人造的)及其规律的认识,知识还包括人们利用客观规律解决实际问题的方法和策
3、略等。 分类方法: 1) 按知识的确定性分为:确定知识和不确定知识; 2) 按知识的内容分:(客观)原理性知识和(主观)方法性知识两大类。 3) 按知识的表示形式分:显式的知识和隐式的知识等。 8、何谓知识表示? 研究知识表示时需要考虑那些问题? 答:知识表示是指面向计算机的知识描述或表达形式和方法。 研究知识表示时需要考虑知识的存储与使用等方面的问题。 9. 何谓语义网络?语义网络表示法的特点是什么? 定义:通过概念及其语义关系来表示知识的一种带有标注的有向图。 特点:结构性、自然性、联想性和非严格性。 10. 语义网络表示法与产生式表示法、谓词逻辑表示法之间的关系如何? 解:产生式表示法是
4、以一条产生式规则作为知识的单位,各条产生式规则之间没有直接的联系。 语义网络将基本网元视作一种知识的单位,各个网元之间相互联系。 从谓词逻辑表示法来看,一个基本网元相当于一组一阶二元谓词。 11. 请写出用语义网络表示法表示知识的步骤。 解: (1)确定问题中的所有对象以及各对象的属性; (2)确定所论对象间的关系; (3)语义网络中,如果节点间的联系是 ISA/AKO,则下层节点对上层节点的属性具有继承性。整理同一层节点的共同属性,并抽出这些属性,加入上层节点中,以免造成属性信息的冗余。 (4)将各对象作为语义网络的一个节点,而各对象间的关系作为网络中各节点间的弧,连接形成语义网络。 12.
5、 在基于语义网络的推理系统中,一般有几种推理方法,简述它们的推理过程。 解:推理方法一般有两种:匹配和继承。 匹配推理过程: (1)根据提出的待求解问题,构造一个局部网络; (2)根据局部网络到知识库中寻找可匹配的语义网络;(3)匹配成功时,与未知处相匹配的事实就是问题的解。 继承推理过程:下层节点从上层节点继承一些属性。 13. 何谓框架?框架的一般表示形式是什么? 定义:一种描述所论对象属性的数据结构。 一个框架可以由框架名、槽、侧面和值四部分组成。一般可表示为: 框架名 槽名 侧面 值 侧面 值 槽名 侧面 值 侧面 值 14. 框架表示法有何特点?请叙述用框架表示法表示知识的步骤。 解
6、:特点:结构性、继承性和自然性。 框架表示知识的步骤: (1)分析等表达知识中的对象及其属性,对框架中的槽进行合理设置。 (2)对各对象间的各种联系进行考察。使用一些常用的或根据具体需要定义一些表达联系的槽名,来描述上下层框架间的联系。 (3)对各层对象的“槽”及“侧面”进行合理的组织安排,避免信息描述的重复。17. 请写出用状态空间表示法表示问题的一般步骤。 解: (1)定义状态的描述形式。 (2)用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述。 (3)定义一组算符,使得利用这组算符可把问题由一种状态转变为另一种状态。 15. 试写出
7、“学生框架”的描述。 解:框架名:<学生> 姓名:温安平 班级:24020102 学号:2402010214 性别:男 年龄:22 职务:无 籍贯:福建龙岩 民族:汉 政治面貌:团员 16. 什么是状态空间?状态空间是怎样构成的?如何表示状态空间? 定义:表示一个问题的全部状态及一切可用算符构成的集合。 构成:问题的所有可能初始状态构成的集合 S;算符集合 F;目标状态集合 G。 状态空间用一个三元组(S,F,G)来表示。 18简述用A*算法求解问题时为什么会出现重复扩展节点问题,解决的方法有哪些? 答:当问题有解时,A*算法总是找到问题的最优解结束。如果 h 函数定义的不合理,则
8、当扩展一个节点时,不一定就找到了从初始节点到该节点的最优路径,对于这样的节点,就有可能被多次扩展。特别是如果这样的节点处于问题的最优解路径上时,则一定会被多次扩展。解决的方法一是对 h 函数的定义给出限制,使得 h 满足单调性。对于满足单调性条件的 h,则一定不会出现重复扩展节点问题。二是对 A*算法加以改进,使用修正的 A*算法进行搜索,则可以减少重复扩展节点问题。 19、简述回溯策略与深度优先策略的不同点。 答:回溯搜索策略与深度有限搜索策略最大的不同是深度有限搜索策略属于图搜索,而回溯搜索则不是图搜索。在回溯搜索中,只保留了从初始节点到当前节点的搜索路径。而深度优先搜索,则保留了所有的已
9、经搜索过的路径。 20农夫过河问题 解:设用四元组(FARMER,FOX,SHEEP,CABBAGE )表示状态,0 表示在左岸,1 表示在右岸。(0,0,0,0)(1,1,1,0)(1,0,1,0)(0,0,1,0)P(sheep)Q(fox)Q(sheep)P()Q()P(cabbage)P(fox)(1,0,1,1)Q(cabbage)(0,0,1,0)(0,1,0,0)P(sheep)Q(sheep)(0,0,1,0)(0,0,0,1)P(sheep)Q(sheep)(1,1,0,1)Q(cabbage)P(cabbage)(0,0,1,0)(0,1,0,1)P()Q()(0,0,1,
10、0)(1,1,1,1)P(sheep)Q(sheep)P(fox)Q(fox)则初始状态为: (0,0,0,0) ,目标状态为: (1,1,1,1) 。 状态转换规则:(农夫和船始终在一起) 设用 P(X)表示将 X 从左岸运到右岸,X(FOX,SHEEP,CABBAGE) ; P()表示农夫将船从左岸运到右岸 Q(X)表示将 X 从右岸运到左岸,X(FOX,SHEEP,CABBAGE) ; Q()表示农夫将船从右岸运到左岸 6修道士与野人问题 设在左岸上的修道士人数和野人数及船数用下式表示: S= (m, c, b) 其中, m表示左岸的修道士人数, c表示左岸的野人数, b表示左岸的船数.
11、 则: 初始状态: S0=(3, 3, 1) 目标状态: S15=(0, 0, 0)用符号Pij表示从左岸到右岸运i个修道士,j个野人; 用符号Qij表示从右岸到左岸运i个修道士,j个野人.考虑到船每次最多只能载两人,则所有操作集合:F= P01 , P10 , P11 , P02 , P20, Q01, Q10, Q11 , Q02 , Q20 操作的条件:1.当前状态满足可执行条件.2.操作不能产生非法状态则状态空间图如右:规则集: S(3,3,1) :-S(3,2,0). 22某问题的状态空间图如下图所示,其中括号内标明的是各节点的 h 值,弧线边的数字是该弧线的耗散值,试用 A 算法求
12、解从初始节点 S到目标节点 T 的路径。要求给出搜索图,标明各节点的 f 值,及各节点的扩展次序,并给出求得的解路径。 解:搜索图如图所示,其中括号内标出的是节点的f值,圆圈内的数字是扩展的次序。F(16)得到的解路径为:S-B-F-J-T 23设有如下结构的移动将牌游戏:BBWWE其中,B 表示黑色将牌,W表是白色将牌,E 表示空格。游戏的规定走法是: (1) 任意一个将牌可移入相邻的空格,规定其代价为 1; (2) 任何一个将牌可相隔 1 个其它的将牌跳入空格,其代价为跳过将牌的数目加 1。 游戏要达到的目标什是把所有 W 都移到 B 的左边。对这个问题,请定义一个启发函数h(n),并给出
13、用这个启发函数产生的搜索树。你能否判别这个启发函数是否满足下解要求?再求出的搜索树中,对所有节点是否满足单调限制? 解:设h(x)=每个W左边的B的个数,f(x)=d(x)+3*h(x),其搜索树如下:24 谓词逻辑和命题逻辑的关系如何?有何异同? 解:谓词逻辑是命题逻辑的扩充与发展,它将一个原子命题分解成谓词与个体两部分。命题逻辑是谓词逻辑的基础,是谓词逻辑的一种特殊形式。 不同点:命题逻辑不能描述不同事物的共同特征,而谓词逻辑可以。命题逻辑中可以直接通过真值指派给出解释,而谓词逻辑不行。 相同点:归结原理都是完备的,都可以用来表示事实性知识。 25 什么是谓词的项?什么是谓词的阶?请写出谓
14、词的一般形式。 解:项是个体常数、变量和函数的统称。若谓词个体是常量、变元或函数,则为一阶谓词,若谓词个体是一阶谓词,则为二阶谓词,依此类推是为谓词的阶。 谓词的一般形式:P(x1,x2,xn) ,其中P是谓词,x1,x2,xn 是个体。 26 请写出用一阶谓词逻辑表示法表示知识的步骤。 步骤: (1)定义谓词及个体,确定每个谓词及个体的确切含义; (2)根据所要表达的事物或概念,为每个谓词中的变元赋予特定的值; (3)根据所要表达的知识的语义用适当的联接符号将各个谓词联接起来,形成谓词公式。 34请写出应用归结原理进行定理证明的步骤。 解:1 消去蕴涵符号2 减少否定符号的辖域3 对变量标准
15、化4 消去存在量词5 化为前束形6 把母式化为合取范式7 消去全称量词8 消去连词符号9 更换变量名称 27 对下列谓词公式分别指出哪些是约束变元?哪些是自由变元?并指出各量词的辖域。 (1)(x)(P(x,y)(y)(Q(x,y)R(x,y) 解:(x)的辖域是(P(x,y)(y)(Q(x,y)R(x,y),x 是受(x)约束的变元;(y)的辖域的(Q(x,y)R(x,y),y 是受(y)约束的变元;没有自由变元。 (2)(z)(y)(P(z,y)Q(z,x)R(u,v) 解:(z)的辖域是(y)(P(z,y)Q(z,x),z 是受(z)约束的变元;(y)的辖域是 (P(z,y)Q(z,x)
16、,y 是受(y)约束的变元;u、v是自由变元。 (3)(x)(P(x,f(x)(z)(Q(x,z)R(x,z) 解:(x)的辖域是(P(x,f(x)(z)(Q(x,z)R(x,z), x是受(x)约束的变元; (z)的辖域是(Q(x,z) R(x,z),z 是受(z)约束的变元;没有自由变元。 28 谓词的永假性和不可满足性等价吗? 解:根据永假性和不可满足性的定义可知,两者是等价的。 29 什么是置换?什么是合一?什么是最一般的合一? 解:置换是形如t1/x1,t2/x2,tn/xn的一个有限集。其中 xi 是变量,ti 是不同于 xi 的项(常量,变量,函数) ,且 xixj(ij) ,i
17、,j=1,2,n。 设有公式集E1,E2,En和置换,使 E1E2En,便称 E1,E2,En是可合一的,用称为合一置换。 若 E1,E2,En 有合一置换,且对 E1,E2,En 的任一置换都存在一个置换,使得,则称是 E1,E2,En 的最一般合一置换。 30 什么是范式?请写出前束范式与 SKOLEM 范式的形式。 答:定义:量词按照一定的规则出现的谓词公式。 前束范式形式:(x)(y)(z)(P(x)F(y,z)Q(y,z) SKOLEM 范式形式:(x1) (x2) (xn)M(x1,x2,xn) 31 什么是子句?什么是子句集?请写出谓词公式子句集的步骤。 解:子句就是由一些文字组
18、成的析取式。由子句构成的集合称为子句集。 步骤: (1)消去谓词公式中的蕴涵和等值符号,以AB代替AB,以(AB)( AB)替换 AB。 (2)减少否定符号的辖域,使否定符号最多只作用到一个谓词上。 (3)重新命名变元名,使所有的变元的名字均不同,并且自由变元及约束变元亦不同。 (4)消去存在量词。 (5)把全称量词全部移到公式的左边,并使每个量词的辖域包括这个量词后面公式的整个部分。 (6)公式化为合取范式,得到与其对应的子句集。32谓词公式与它的子句集等值吗?在什么情况下它们才会等价? 解:不等值。在不可满足的意义下是等价的。 33 引入Robinson 的归结原理有何意义?什么是归结推理
19、?什么是归结式?请写出它的推理规则。 解:Robinson 归结原理是一种证明子句集不可满足性,从而实现定理证明的方法,是对自动推理的重大突破,使机器定理证明变为现实。 设 C1 与C2 是子句集中的任意两个子句,如果 C1 中的文字 L1 与 C2中的文字 L2互补,则从 C1 和 C2 中可以分别消去 L1 和 L2,并将二子句中余下的部分做析取构成一个新的子句 C12,这一过程称为归结,所得到的子句 C12 称为C1和C2 的归结式。 推理规则:消去互补对。 35什么是完备的归结控制策略?有哪些归结控制策略是完备的? 解:若子句集是不可满足的,则必存在一个从该子句集到空子句的归结推理过程
20、的归结控制策略是完备的归结控制策略。 完备的归结控制策略有:删除策略、线性归结策略、支持集策略,祖先过滤形策略。 36. 把下列谓词公式分别化为相应的子句集: (1)(z)(y)(P(z,y)Q(z,y) 解:所求子句集为 S=P(z,y),(z,y) (2)(x)(y)(P(x,y)Q(x,y) 解:原式(x)(y)(P(x,y)Q(x,y) 所求子句集为 S=P(x,y)Q(x,y) (3)(x)(y)(P(x,y)(Q(x,y)R(x,y) 解:原式(x)(y)(P(x,y)(Q(x,y)R(x,y) (x)(P(x,f(x)(Q(x,f(x)R(x,f(x) 所求子句集为 S= P(x
21、,f(x)(Q(x,f(x)R(x,f(x) 37设有下列语句,请用相应的谓词公式把它们表示出来: (1) 有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。 解:定义谓词如下: Like(x,y):x 喜欢y。 Club(x):x 是梅花。 Human(x):x 是人。 Mum(x):x是菊花。 “有的人喜欢梅花”可表达为:(x)(Human(x)Like(x,Club(x) “有的人喜欢菊花”可表达为:(x)(Human(x)Like(x,Mum(x) “有的人既喜欢梅花又喜欢菊花”可表达为: (x)(Human(x)Like(x,Club(x) Like(x,Mum(x) (2
22、) 他每天下午都去玩足球。 解:定义谓词如下: PlayFootball(x):x玩足球。 Day(x):x 是某一天。 则语句可表达为:(x)(D(x)PlayFootball(Ta) (3) 太原市的夏天既干燥又炎热。 解:定义谓词如下: Summer(x):x 的夏天。 Dry(x):x 是干燥的。 Hot(x):x 是炎热的。 则语句可表达为:Dry(Summer(Taiyuan)Hot(Summer(Taiyuan) 38判断下列子句集中哪些是不可满足的: (1)S=PQ, Q,P, P 解:使用归结推理: (1) PQ (2) Q (3)P (4) P (3)与(4)归结得到 NI
23、L,因此S 是不可满足的。 (2)S=PQ, PQ,PQ, PQ 解:使用归结推理: (1) PQ (2) PQ (3) PQ (4) PQ (1)与(2)归结得 (5)Q (3)与(5)归结得 (6)P (4)与(6)归结得 (7) Q (5)与(7)归结得 NIL,因此 S 是不可满足的。 (3)S=P(y)Q(y), P(f(x) R(a) 解:使用归结推理: 设C1= P(y)Q(y),C2=P(f(x) R(a),选L1= P(y),L2=P(f(x),则 L1与L2的mgu是=f(x)/y,C1 与C2 的二元归结式 C12=Q(f(x)R(a),因此 S 是可满足的。 (4)S=
24、P(x)Q(x), P(y)R(y),P(a), S(a), S(z)R(z) 解:使用归结推理: (1) P(x)Q(x) (2) P(y)R(y) (3) P(a) (4) S(a) (5) S(z)R(z) (2)与(3)归结得到 (6)R(a) (4)与(5)归结得到 (7) R(a) (6)与(7)归结得到 NIL,因此S 是不可满足的。(5)S=P(x) Q(y) L(x,y), P(a), R(z) L(a,z) ,R(b),Q(b) 解:使用归结推理: (1) P(x) Q(y) L(x,y) (2) P(a) (3) R(z) L(a,z) (4) R(b) (5) Q(b)
25、 (1)与(2)归结得到 (6) Q(y) L(a,y) (5)与(6)归结得到 (7) L(a,b) (3)与(4)归结得到 (8) L(a,b) (7)与(8)归结得到 NIL, 因此 S 是不可满足的。 (6)S=P(x)Q(f(x),a), P(h(y)Q(f(h(y),a) P(z) 解:使用归结推理: 令C1= P(x)Q(f(x),a), C2= P(h(y)Q(f(h(y),a)P(z) 则: C2 内部的 mgu 是=h(y)/z,合一后C2=P(h(y)Q(f(h(y),a) 选L1=P(x),L2=P(h(y) 则 L1与L2的mgu是=h(y)/x, C1 与 C2的二
26、元归结式 C12=P(h(y)Q(f(h(y),a),因此S是可满足的。 (7)S=P(x) Q(x) R(x), P(y) R(y) , Q(a), R(b) 解:使用归结推理: (1) P(x) Q(x) R(x) (2) P(y) R(y) (3) Q(a) (4) R(b) (1)与(3)归结得到 (5) P(a) R(a) (2)与(4)归结得到 (6) P(b) (5)与(6)归结得到 (7) R(b) (4)与(7)归结得到 NIL,因此 S 是不可满足的。 (8)S=P(x)Q(x), Q(y)R(y), P(z)Q(z) , R(u) 解:使用归结推理: (1) P(x)Q(
27、x) (2) Q(y)R(y) (3) P(z)Q(z) (4) R(u) (2)与(4)归结得到 (5) Q(u) (1)与(5)归结得到 (6) P(u) (3)与(6)归结得到 (7)Q(u) (5)与(7)归结得到 NIL,因此 S 是不可满足的。39 对下列各题分别证明 G 是否为F1,F2,Fn 的逻辑结论。 (1)F1:(x)(y)P(x,y) G:(y)(x)P(x,y) 解:首先将 F1 和G 化为子句集: (1)P(a,b) (2)P(x,b) (1)与(2)归结得到 NIL,=a/x, 因此 G 是F1的逻辑结论。 (2)F1:(x)(P(x)(Q(a)Q(b) G:(x
28、)(P(x)Q(x) 解:首先将 F1 和G 化为子句集: (1)P(x) (2)Q(a)Q(b) (3) P(x) Q(x) (2)自身合一得到 (4)Q(a),=a/b (1)与(3)归结得到 (5) Q(x) (4)与(5)归结得到 NIL,=a/ x, 因此 G 是F1的逻辑结论。 (3)F1:(x)(y)(P(f(x)Q(f(b) G:P(f(a)P(y)Q(y) 解:首先将 F1 和G 化为子句集: (1)P(f(a) (2)Q(f(b) (3)P(f(a)P(y)Q(y) (3)自身合一得到 (4) P(f(a)Q(f(a),=f(a)/y (1)与(4)归结得到 (5) Q(f
29、(a) (2)与(5)归结得到 NIL,=f(a)/ f(b), 因此 G 是F1的逻辑结论。 (4)F1:(x)(P(x)(y)(Q(y)L(x,y) F2:(x)(P(x)(y)(R(y)L(x,y) G:(x)(R(x)Q(x) 解:首先将 F1、F2 和G化为子句集: (1) P(x) Q(y)L(x,y) (2) P(a) (3)R(y)L(a,y) (4)R(a) (5)Q(a) (1)与(2)归结得到 (6) Q(y)L(a,y),=a/ x (3)与(6)归结得到 (7) R(y) Q(y) (4)与(7)归结得到 (8) Q(a),=a/ y (5)与(8)归结得到 NIL,
30、 因此 G 是F1、F2 的逻辑结论。 40证明:(y)(Q(y)(B(y)C(y)(y)(Q(y)D(y)(y)(D(y)C(y) 解:对结论否定并与前提合并得谓词公式 G: G=(y)(Q(y)(B(y)C(y)(y)(Q(y)D(y)(y)(D(y)C(y) 将谓词公式 G 化为子句集: (1)Q(y)B(y) (2) Q(y)C(y) (3)Q(a) (4)D(a) (5) D(y)C(y) 使用归结推理: (2)与(3)归结得到 (6)C(a),=a/ y (4)与(5)归结得到 (7) C(a),=a/ y (6)与(7)归结得到 NIL,因此G 是不可满足的,从而命题得证。 41
31、设已知: (1)凡是清洁的东西就有人喜欢; (2)人们都不喜欢苍蝇; 试证明:苍蝇是不清洁的 解: 所以原命题成立42、什么是不确定性推理?为什么要采用不确定性推理? 答:不确定性推理是指那种建立在不确定性知识和证据的基础上的推理。它实际上是一种从不确定的初始证据出发,通过运用不确定性知识,最终推出既保持一定程度的不确定性,又是合理和基本合理的结论的推理过程。 一个人工智能系统,由于知识本身的不精确和不完全,采用标准逻辑意义下的推理方法难以达到解决问题的目的。对于一个智能系统来说,知识库是其核心。在这个知识库中,往往大量包含模糊性、随机性、不可靠性或不知道等不确定性因素的知识。为了解决这种条件
32、下的推理计算问题,不确定性推理方法应运而生。 43不确定性推理中要解决哪些基本问题? 答:在不确定性推理中,除了解决在确定性推理过程中所提到的推理方向、推理方法、控制策略等基本问题外,一般还需要解决不确定性的表示与度量、不确定性的匹配、不确定性的传递算法以及不确定性的合成等问题。简而言之,表示问题、计算问题、语义问题。 44不确定性推理可以分为哪几种类型? 答:可分为形式化方法和非形式化方法。形式化方法有逻辑法、新计算法和新概率法。逻辑法是非数值方法,采用多值逻辑和非单调逻辑来处理不确定性。新计算法认为概率法不足以描述不确定性,从而出现了证据理论(也叫 DempsterShafter, D-S
33、 方法) ,确定性方法(CF 法)以及模糊逻辑方法。新概率法试图在传统的概率论框架内,采用新的计算方法以适应不确定性描述。 非形式化方法是指启发性方法,对不确定性没有给出明确的概念。 45简单介绍所学的不确定性推理方法的特点是什么? 答:不确定性方法:不确定性方法的宗旨不是理论上的严密性,而是处理实际问题的可用性。 同时也不可一成不变地用于任何领域,甚至也不能适用于所有科学领域。推广至一个新领域时必须根据具体情况修改。 46、设有如下一组推理规则: r1: IF E1 THEN E2 (0.6) r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (
34、0.8) r4: IF E5 THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max0,CF(E1) =0.6 × max0,0.5=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max0, minCF(E2 ), CF(E3 ) =0.7 × max0, min0.3, 0.6=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max0,CF(E4) =0.8 ×
35、; max0, 0.21)=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max0,CF(E5) =0.9 ×max0, 0.7)=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692 47、设某小组有 5 个同学,分别为S1,S2,S3,S4,S5。若对每个同学的“学习好”程度打分: S1:95 S2:85 S3:80 S4:70 S5:90 这样就确定了一个模糊集 F,它表示该小组同学对“学习好”这一模糊概念的隶属程度,请写
36、出该模糊集。 解:对模糊集为 F,可表示为: F=95/ S1+85/S2+80/ S3+70/S4+90/S5或 F=95/ S1, 85/S2, 80/ S3, 70/S4, 90/S5 48、设有论域 U=u1, u2, u3, u4, u5 并设 F、G 是U 上的两个模糊集,且有 F=0.9/u1+0.7/u2+0.5/u3+0.3/u4 G=0.6/u3+0.8/u4+1/u5请分别计算 FG,FG,F。 解:FG=(0.90)/ u1+(0.70)/ u2+(0.50.6)/u3+(0.30.8)/u4+(01)/u5 =0/ u1+0/ u2+0.5/u3+0.3/u4+0/u
37、5 =0.5/u3+0.3/u4FG=(0.90)/ u1+(0.70)/ u2+(0.50.6)/u3+(0.30.8)/u4+(01)/u5 =0.9/ u1+0.7/ u2+0.6/u3+0.8/u4+1/u5F=(1-0.9)/ u1+(1-0.7)/ u2+(1-0.5)/u3+(1-0.3)/u4+(1-0)/u5 =0.1/ u1+0.3/ u2+0.5/u3+0.7/u4+1/u549、设有如下两个模糊关系: 请写出R1与R2的合成R1R2。 解:R(1,1)=(0.30.2)(0.70.6)(0.20.9)= 0.20.60.2=0.6 R(1,2)=(0.30.8)(0.7
38、0.4)(0.20.1)= 0.30.40.1=0.4 R(2,1)=(10.2)(00.6)(0.40.9)= 0.200.4=0.4 R(2,2)=(10.8)(00.4)(0.40.1)= 0.800.1=0.8 R(3,1)=(00.2)(0.50.6)(10.9)= 0.20.60.9=0.9 R(3,2)=(00.8)(0.50.4)(10.1)= 00.40.1=0.4 因此有 50、设F 是论域 U 上的模糊集,R是 U×V 上的模糊关系,F和 R 分别为: 求模糊变换 FR。 解: =0.10.40.6, 0.30.60.3,0.40.60 =0.6, 0.6, 0
39、.651、设 U=V=1,2,3,4 且有如下推理规则: IF x is 少 THEN y is 多 其中,“少”与“多”分别是 U 与V上的模糊集,设 少=0.9/1+0.7/2+0.4/3 多=0.3/2+0.7/3+0.9/4 已知事实为 x is 较少 “较少”的模糊集为 较少=0.8/1+0.5/2+0.2/3 请用模糊关系 Rm 求出模糊结论。 解:先用模糊关系 Rm 求出规则 IF x is 少 THEN y is 多 所包含的模糊关系Rm Rm (1,1)=(0.90)(1-0.9)=0.1 Rm (1,2)=(0.90.3)(1-0.9)=0.3 Rm (1,3)=(0.90.7)(1-0.9)=0.7 Rm (1,4)=(0.90.9)(1-0.9)=0.7 Rm (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 胸外科护士工作心得
- 2025年全球及中国单摆铣头行业头部企业市场占有率及排名调研报告
- 2025-2030全球倒置行星滚柱丝杠行业调研及趋势分析报告
- 2025年全球及中国虚拟试穿平台行业头部企业市场占有率及排名调研报告
- 2025年全球及中国汽车天线定位器行业头部企业市场占有率及排名调研报告
- 2025年全球及中国重载有轨穿梭小车(RGV)行业头部企业市场占有率及排名调研报告
- 2025年全球及中国丝素蛋白敷料行业头部企业市场占有率及排名调研报告
- 2025-2030全球直线式桁架机器人行业调研及趋势分析报告
- 2025-2030全球装运前检验(PSI)服务行业调研及趋势分析报告
- 2025年全球及中国电子钥匙柜行业头部企业市场占有率及排名调研报告
- 江西省部分学校2024-2025学年高三上学期1月期末英语试题(含解析无听力音频有听力原文)
- GA/T 2145-2024法庭科学涉火案件物证检验实验室建设技术规范
- 2024年中考语文试题分类汇编:非连续性文本阅读(学生版)
- 2024年度窑炉施工协议详例细则版B版
- 第一届山东省职业能力大赛济南市选拔赛制造团队挑战赛项目技术工作文件(含样题)
- 尿毒症替代治疗
- 【课件】2025届高考英语一轮复习小作文讲解课件
- 基底节脑出血护理查房
- 工程公司总经理年终总结
- 2024年海南省高考地理试卷(含答案)
- 【企业盈利能力探析的国内外文献综述2400字】
评论
0/150
提交评论