版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1已知过点(2,3)的直线y=ax+b(a0)不经过第一象限,设s=a+2b,则s的取值范围是()A5sB6sC6sD7s2关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,(m1)2+(n1)22 是否正确? ; mn的取值范围为 3设a为的小数部分,b为的小数部分则的值为()A+1B+1C1D+14设直线kx+(k+1)y1=0与坐标轴所构成的直角三角形的面积为Sk,则S1+S2+S2008= 5如图,点A的坐标为(1,0),点B在直线y=2x4上运动,当线段AB最短时,点B的坐标是 6如图,A1B1A
2、2,A2B2A3,A3B3A4,AnBnAn+1都是等腰直角三角形,其中点A1、A2、An在x轴上,点B1、B2、Bn在直线y=x上,已知OA1=1,则OA2015的长为 7如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D若DB=DC,则直线CD的函数解析式为 8将函数y=6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为 9在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m1,3),若线段AB与直线y=2x+1相交,则m的取值范围为 10方程组的解是 11已知实数m,n满足mn2=1,则代数式m2+2n
3、2+4m1的最小值等于 12已知整数k5,若ABC的边长均满足关于x的方程x23x+8=0,则ABC的周长是 13已知实数x满足,则= 14方程x2|x|1=0的根是 15已知:a0,化简= 16 = 17如果不等式组的解集是1x2,求:坐标原点到直线y=ax+b距离18用配方法解方程:x2+x2=019已知方程x2+(m1)x+m10=0的一个根是3,求m的值及方程的另一个根参考答案与试题解析一选择题(共3小题)1(2014镇江)已知过点(2,3)的直线y=ax+b(a0)不经过第一象限,设s=a+2b,则s的取值范围是()A5sB6sC6sD7s【考点】F7:一次函数图象与系数的关系菁优网
4、版权所有【分析】根据直线y=ax+b(a0)不经过第一象限,可知a0,b0,直线y=ax+b(a0)过点(2,3),可知2a+b=3,依此即可得到s的取值范围【解答】解:直线y=ax+b(a0)不经过第一象限,a0,b0,直线y=ax+b(a0)过点(2,3),2a+b=3,a=,b=2a3,s=a+2b=+2b=b,s=a+2b=a+2(2a3)=3a66,即s的取值范围是6s故选:B【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系k0时,直线必经过一、三象限;k0时,直线必经过二、四象限;b0时,直线与y
5、轴正半轴相交;b=0时,直线过原点;b0时,直线与y轴负半轴相交2(2015南充)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:这两个方程的根都负根;(m1)2+(n1)22;12m2n1,其中正确结论的个数是()A0个B1个C2个D3个【考点】AB:根与系数的关系;AA:根的判别式菁优网版权所有【专题】16 :压轴题【分析】根据题意,以及根与系数的关系,可知两个整数根都是负数;根据根的判别式,以及题意可以得出m22n0以及n22m0,进而得解;可以采用根与系数关系进行解答,据此即可得解【
6、解答】解:两个整数根且乘积为正,两个根同号,由韦达定理有,x1x2=2n0,y1y2=2m0,y1+y2=2n0,x1+x2=2m0,这两个方程的根都为负根,正确;由根判别式有:=b24ac=4m28n0,=b24ac=4n28m0,4m28n0,4n28m0,m22n0,n22m0,m22m+1+n22n+1=m22n+n22m+22,(m1)2+(n1)22,正确;由根与系数关系可得2m2n=y1y2+y1+y2=(y1+1)(y2+1)1,由y1、y2均为负整数,故(y1+1)(y2+1)0,故2m2n1,同理可得:2n2m=x1x2+x1+x2=(x1+1)(x2+1)1,得2n2m1
7、,即2m2n1,故正确故选:D【点评】本题主要考查了根与系数的关系,以及一元二次方程的根的判别式,有一定的难度,注意总结3(2016邯郸校级自主招生)设a为的小数部分,b为的小数部分则的值为()A+1B+1C1D+1【考点】7A:二次根式的化简求值菁优网版权所有【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后代、化简、运算、求值,即可解决问题【解答】解:=,a的小数部分=1;=,b的小数部分=2,=故选B【点评】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答二填空题(共13小题)4(2012麻城市校级自主招生)设直线k
8、x+(k+1)y1=0与坐标轴所构成的直角三角形的面积为Sk,则S1+S2+S2008=【考点】F5:一次函数的性质菁优网版权所有【专题】16 :压轴题;2A :规律型【分析】先依次计算出S1、S2等的面积,再依据规律求解【解答】解:kx+(k+1)y1=0当x=0时,y=;当y=0时,x=Sk=××=,根据公式可知,S1+S2+S2008=+=(1)=【点评】结合题意依次计算出S1、S2等的面积,再总结规律,易求解5(2012北海)如图,点A的坐标为(1,0),点B在直线y=2x4上运动,当线段AB最短时,点B的坐标是(,)【考点】F5:一次函数的性质;J4:垂线段最短菁
9、优网版权所有【专题】11 :计算题;16 :压轴题【分析】作ABBB,B即为当线段AB最短时B点坐标,求出AB的解析式,与BB组成方程组,求出其交点坐标即可【解答】解:设AB解析式为y=kx+b,ABBB,BB解析式为y=2x4,k1×k2=1,2k=1,k=,于是函数解析式为y=x+b,将A(1,0)代入y=x+b得,+b=0,b=,则函数解析式为y=x,将两函数解析式组成方程组得,解得,故B点坐标为(,)故答案为(,)【点评】本题考查了一次函数的性质和垂线段最短,找到B点是解题的关键,同时要熟悉待定系数法求函数解析式6(2015衡阳)如图,A1B1A2,A2B2A3,A3B3A4
10、,AnBnAn+1都是等腰直角三角形,其中点A1、A2、An在x轴上,点B1、B2、Bn在直线y=x上,已知OA1=1,则OA2015的长为22014【考点】F8:一次函数图象上点的坐标特征;KW:等腰直角三角形菁优网版权所有【专题】16 :压轴题;2A :规律型【分析】根据规律得出OA1=1,OA2=2,OA3=4,OA4=8,所以可得OAn=2n1,进而解答即可【解答】解:因为OA1=1,OA2=2,OA3=4,OA4=8,由此得出OAn=2n1,所以OA2015=22014,故答案为:22014【点评】此题考查一次函数图象上点的坐标,关键是根据规律得出OAn=2n1进行解答7(2013包
11、头)如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D若DB=DC,则直线CD的函数解析式为y=2x2【考点】F9:一次函数图象与几何变换菁优网版权所有【专题】16 :压轴题【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,DO垂直平分BC,OC=OB,直线CD由直线AB平移而成,CD=AB,点D的坐标为(0,2),平移后的图形与
12、原图形平行,平移以后的函数解析式为:y=2x2故答案为:y=2x2【点评】本题考查了一次函数图象与几何变换,要注意利用一次函数的特点,列出方程组,求出未知数的值从而求得其解析式;求直线平移后的解析式时要注意平移时k的值不变,只有b发生变化8(2010黄石)将函数y=6x的图象l1向上平移5个单位得直线l2,则直线l2与坐标轴围成的三角形面积为【考点】F9:一次函数图象与几何变换菁优网版权所有【专题】11 :计算题;16 :压轴题【分析】易得l2的解析式,那么常数项为y轴上的截距,让纵坐标为0可得与x轴的交点,围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值【解答】解:
13、由题意得l2的解析式为:y=6x+5,与y轴的交点为(0,5),与x轴的交点为(,0),所求三角形的面积=×5×=【点评】考查的知识点为:一次函数向上平移,常数项加相应的单位,注意熟练掌握直线与坐标轴围成三角形的面积=×x轴交点的绝对值×y轴交点的绝对值9(2015大连)在平面直角坐标系中,点A,B的坐标分别为(m,3),(3m1,3),若线段AB与直线y=2x+1相交,则m的取值范围为m1【考点】FF:两条直线相交或平行问题菁优网版权所有【专题】11 :计算题;16 :压轴题【分析】先求出直线y=3与直线y=2x+1的交点为(1,3),再分类讨论:当点
14、B在点A的右侧,则m13m1,当点B在点A的左侧,则3m11m,然后分别解关于m的不等式组即可【解答】解:当y=3时,2x+1=3,解得x=1,所以直线y=3与直线y=2x+1的交点为(1,3),当点B在点A的右侧,则m13m1,解得m1;当点B在点A的左侧,则3m11m,无解,所以m的取值范围为m1【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同10(2012徐汇区校级模拟)方程组的解是【考点】AF:高次方程菁优网版权所有【专题】11 :计算题;16 :压
15、轴题【分析】根据2xy=1,用x表示出y,然后代入第一个方程,得出x的值后代入,可得出y的值【解答】解:由2xy=1,可得:y=2x1,代入第一个方程可得:3x2(2x1)2(2x1)+3=0,解得:x1=3,x2=1,当x=3时,y=5;当x=1时,y=3;故方程组的根为:,故答案为:,【点评】解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可11(2014南通)已知实数m,n满足mn2=1,则代数式m2+2n2+4m1的最小值等于4【考点】AE:配方法的应用;1F:非负数的性质:偶次方菁优网版权所有【专题】16 :压轴
16、题;36 :整体思想【分析】已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值【解答】解:mn2=1,即n2=m10,m1,原式=m2+2m2+4m1=m2+6m+912=(m+3)212,则代数式m2+2n2+4m1的最小值等于(1+3)212=4故答案为:4【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键12(2013绵阳)已知整数k5,若ABC的边长均满足关于x的方程x23x+8=0,则ABC的周长是6或12或10【考点】AA:根的判别式;A8:解一元二次方程因式分解法;K6:三角形三边关系菁优网版权所有【专题】
17、11 :计算题;16 :压轴题【分析】根据题意得k0且(3)24×80,而整数k5,则k=4,方程变形为x26x+8=0,解得x1=2,x2=4,由于ABC的边长均满足关于x的方程x26x+8=0,所以ABC的边长可以为2、2、2或4、4、4或4、4、2,然后分别计算三角形周长【解答】解:根据题意得k0且(3)24×80,解得k,整数k5,k=4,方程变形为x26x+8=0,解得x1=2,x2=4,ABC的边长均满足关于x的方程x26x+8=0,ABC的边长为2、2、2或4、4、4或4、4、2ABC的周长为6或12或10故答案为:6或12或10【点评】本题考查了一元二次方程
18、ax2+bx+c=0(a0)的根的判别式=b24ac:当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根也考查了因式分解法解一元二次方程以及三角形三边的关系13(2012金牛区三模)已知实数x满足,则=3【考点】A9:换元法解一元二次方程菁优网版权所有【专题】16 :压轴题【分析】先设=y,代入后化为整式方程求解,即可求出答案【解答】解:设=y,则原方程可变形为y2y=6,解得y1=2,y2=3,当y1=2时,=2,x2+2x+2=0,=b24ac0此方程无解,当y2=3时,=3,x23x+2=0,=b24ac0此方程有解,=3;故答案为:3【点评】此题考查了
19、用换元法解分式方程,是常用方法之一,它能够使方程化繁为简,化难为易,因此对能用此方法解的分式方程的特点应该加以注意,并要能够熟练变形整理14(2011春桐城市月考)方程x2|x|1=0的根是或【考点】A7:解一元二次方程公式法菁优网版权所有【专题】16 :压轴题;32 :分类讨论【分析】分x0和x0两种情况进行讨论,当x0时,方程x2x1=0;当x0时,方程x2+x1=0;分别求符合条件的解即可【解答】解:当x0时,方程x2x1=0;x=;当x0时,方程x2+x1=0;x=,x=;故答案为或【点评】本题考查了一元二次方程的解法公式法,要特别注意分类讨论思想的运用15(2004宁波)已知:a0,
20、化简=2【考点】73:二次根式的性质与化简菁优网版权所有【专题】16 :压轴题【分析】根据二次根式的性质化简【解答】解:原式=又二次根式内的数为非负数a=0a=1或1a0a=1原式=02=2【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值16(2013庄浪县校级模拟)观察下列二次根式的化简:,从计算结果中找到规律,再利用这一规律计算下列式子的值=2009【考点】76:分母有理化菁优网版权所有【专题】16 :压轴题;2A :规律型【分析】先将第一个括号内的各项分母有理化,此时发现,除第二项和倒数第二项外,其他各项的和为0,由此可计算出第一个括号的值,然后再计算和第二个括号的乘积【解答
21、】解:原式=(1+)(+1)=(1)(+1)=2009【点评】本题考查的是二次根式的分母有理化以及二次根式的加减运算能够发现式子的规律是解答此题的关键三解答题(共3小题)17(2017春武侯区校级月考)如果不等式组的解集是1x2,求:坐标原点到直线y=ax+b距离【考点】FD:一次函数与一元一次不等式菁优网版权所有【分析】根据不等式组的解集是1x2,得到关于a,b的二元一次方程组,解方程组得到a,b的值,再根据互相垂直的两条直线的关系可得经过原点并且与直线y=ax+b垂直的直线解析式,联立两直线解析式可得交点坐标,再根据勾股定理即可求解【解答】解:,解得x2a+b+4,解得x,不等式组的解集是
22、1x2,2a+b+4=1,解得x,解得,直线y=ax+b的解析式为y=x1,经过原点并且与直线y=ax+b垂直的直线解析式为y=x,联立两解析式,解得,由勾股定理可得坐标原点到直线y=ax+b距离为=【点评】考查了一次函数与一元一次不等式,互相垂直的两条直线的关系,勾股定理,方程思想,解题的关键是得到a,b的值18(2013甘肃模拟)用配方法解方程:x2+x2=0【考点】A6:解一元二次方程配方法菁优网版权所有【专题】16 :压轴题【分析】先把常数项2移项后,再在方程的左右两边同时加上一次项系数1的一半的平方,然后配方,再进行计算即可【解答】解:配方,得x2+x=2+,即 =,所以x+= 或x
23、+=解得 x1=1,x2=2【点评】此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数19(2012常德模拟)已知方程x2+(m1)x+m10=0的一个根是3,求m的值及方程的另一个根【考点】A5:解一元二次方程直接开平方法;A3:一元二次方程的解菁优网版权所有【专题】11 :计算题;16 :压轴题【分析】一元二次方程的根就是能够使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍然成立;将x=3代入原方
24、程即可求得m及另一根的值【解答】解:方程x2+(m1)x+m10=0的一个根是3,方程9+3(m1)+m10=0,即4m4=0,解得m=1;有方程x29=0,解得x=±3,所以另一根为3【点评】本题考查的是一元二次方程的根的定义考点卡片1非负数的性质:偶次方偶次方具有非负性任意一个数的偶次方都是非负数,当几个数或式的偶次方相加和为0时,则其中的每一项都必须等于02二次根式的性质与化简(1)二次根式的基本性质:a0; a0(双重非负性)(a)2=a (a0)(任何一个非负数都可以写成一个数的平方的形式)a2=a(a0)(算术平方根的意义)(2)二次根式的化简:利用二次根式的基本性质进行
25、化简;利用积的算术平方根的性质和商的算术平方根的性质进行化简ab=ab ab=ab(3)化简二次根式的步骤:把被开方数分解因式;利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2【规律方法】二次根式的化简求值的常见题型及方法1常见题型:与分式的化简求值相结合2解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简(2)代入求值:将含有二次根式的值代入,求出结果(3)检验结果:所得结果为最简二次根式或整式3分母有理化(1)分母有理化是指把分母中的根号化去分母有理化常常是乘二次根式本身(分母只
26、有一项)或与原分母组成平方差公式例如:1a=aaa=aa;1a+b=ab(a+b)(ab)=abab(2)两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式一个二次根式的有理化因式不止一个例如:23的有理化因式可以是2+3,也可以是a(2+3),这里的a可以是任意有理数4二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰5一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方
27、程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根(2)一元二次方程一定有两个解,但不一定有两个实数解这x1,x2是一元二次方程ax 2+bx+c=0(a0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量ax12+bx1+c=0(a0),ax22+bx2+c=0(a0)6解一元二次方程-直接开平方法形如x2=p或(nx+m)2=p(p0)的一元二次方程可采用直接开平方的方法解一元二次方程如果方程化成x2=p的形式,那么可得x=±;如果方程能化成(nx+m)2=p(p0)的形式,那么nx+m=±注意:等号左边是一个数的平方的形式而等号右边是一个
28、非负数降次的实质是由一个二次方程转化为两个一元一次方程方法是根据平方根的意义开平方7解一元二次方程-配方法(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法(2)用配方法解一元二次方程的步骤:把原方程化为ax2+bx+c=0(a0)的形式;方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;方程两边同时加上一次项系数一半的平方;把左边配成一个完全平方式,右边化为一个常数;如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解8解一元二次方程-公式法(1)把x=b±b24
29、ac2a(b24ac0)叫做一元二次方程ax2+bx+c=0(a0)的求根公式(2)用求根公式解一元二次方程的方法是公式法(3)用公式法解一元二次方程的一般步骤为:把方程化成一般形式,进而确定a,b,c的值(注意符号);求出b24ac的值(若b24ac0,方程无实数根);在b24ac0的前提下,把a、b、c的值代入公式进行计算求出方程的根注意:用公式法解一元二次方程的前提条件有两个:a0;b24ac09解一元二次方程-因式分解法(1)因式分解法解一元二次方程的意义因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法因式分解法就是先把方程的右边化为0,再把
30、左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想)(2)因式分解法解一元二次方程的一般步骤:移项,使方程的右边化为零;将方程的左边分解为两个一次因式的乘积;令每个因式分别为零,得到两个一元一次方程;解这两个一元一次方程,它们的解就都是原方程的解10换元法解一元二次方程1、解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象
31、的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理2、我们常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的11根的判别式利用一元二次方程根的判别式(=b24ac)判断方程的根的情况一元二次方程ax2+bx+c=0(a0)的根与=b24ac有如下关系:当0时,方程有两个不相等的两个实数根;当=0时,方程有两个相等的两个实数根;当0时,方程无实数根上面的结论反过来也成立12根与系数的关系(1)若二次项系数为1,常用以下关系:x1,x
32、2是方程x2+px+q=0的两根时,x1+x2=p,x1x2=q,反过来可得p=(x1+x2),q=x1x2,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数(2)若二次项系数不为1,则常用以下关系:x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+x2=,x1x2=,反过来也成立,即=(x1+x2),=x1x2(3)常用根与系数的关系解决以下问题:不解方程,判断两个数是不是一元二次方程的两个根已知方程及方程的一个根,求另一个根及未知数不解方程求关于根的式子的值,如求,x12+x22等等判断两根的符号求作新方程由给出的两根满足的条件,确定字母的取值这类问题比较
33、综合,解题时除了利用根与系数的关系,同时还要考虑a0,0这两个前提条件13配方法的应用1、用配方法解一元二次方程配方法的理论依据是公式a2±2ab+b2=(a±b)2配方法的关键是:先将一元二次方程的二次项系数化为1,然后在方程两边同时加上一次项系数一半的平方2、利用配方法求二次三项式是一个完全平方式时所含字母系数的值关键是:二次三项式是完全平方式,则常数项是一次项系数一半的平方3、配方法的综合应用14高次方程(1)高次方程的定义:整式方程未知数次数最高项次数高于2次的方程,称为高次方程(2)高次方程的解法思想:通过适当的方法,把高次方程化为次数较低的方程求解所以解高次方程
34、一般要降次,即把它转化成二次方程或一次方程也有的通过因式分解来解对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解),这称为阿贝尔定理 换句话说,只有三次和四次的高次方程可用根式求解15一次函数的性质一次函数的性质:k0,y随x的增大而增大,函数从左到右上升;k0,y随x的增大而减小,函数从左到右下降由于y=kx+b与y轴交于(0,b),当b0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴16一次函数图象与系数的关系由于y=kx+b与y轴交于(0,b),当b0时,(0
35、,b)在y轴的正半轴上,直线与y轴交于正半轴;当b0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴k0,b0y=kx+b的图象在一、二、三象限;k0,b0y=kx+b的图象在一、三、四象限;k0,b0y=kx+b的图象在一、二、四象限;k0,b0y=kx+b的图象在二、三、四象限17一次函数图象上点的坐标特征一次函数y=kx+b,(k0,且k,b为常数)的图象是一条直线它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b)直线上任意一点的坐标都满足函数关系式y=kx+b18一次函数图象与几何变换直线y=kx+b,(k0,且k,b为常数)关于x轴对称,就是x不变,y变成y:y=kx+b,即y=kxb;(关于X轴对称,横坐标不变,纵坐标是原来的相反数)关于y轴对称,就是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 辽宁现代服务职业技术学院《人体解剖学局解》2023-2024学年第一学期期末试卷
- 兰州大学《定向运动与素质拓展》2023-2024学年第一学期期末试卷
- 江西工业贸易职业技术学院《学术写作与文献检索》2023-2024学年第一学期期末试卷
- 吉林医药学院《市政工程识图》2023-2024学年第一学期期末试卷
- 湖南水利水电职业技术学院《金融风险管理(实验)》2023-2024学年第一学期期末试卷
- 重庆艺术工程职业学院《计算机辅助产品设计》2023-2024学年第一学期期末试卷
- 重庆化工职业学院《大学生创新创业意识》2023-2024学年第一学期期末试卷
- 中央美术学院《古典园林建筑构造》2023-2024学年第一学期期末试卷
- 浙江农林大学《工程图学综合训练》2023-2024学年第一学期期末试卷
- 郑州商贸旅游职业学院《建筑工程计量与计价B》2023-2024学年第一学期期末试卷
- (精选word)洪恩识字-生字卡片1-200
- 课文背书统计表
- 三年级语文下册教案-14 蜜蜂3-部编版
- 苏教版小学数学四年级下册全册教案
- DB51T2939-2022 彩灯(自贡)制作工艺通用规范
- 押金收据条(通用版)
- 药理治疗中枢神经系统退行性疾病药.pptx
- 强三基反三违除隐患促安全百日专项行动实施方案
- 新人教版七年级数学上册全册专项训练大全
- 标准预防--ppt课件
- 压力管道氩电联焊作业指导书
评论
0/150
提交评论