必修1第三章第4-5节力的合成 力的分解_第1页
必修1第三章第4-5节力的合成 力的分解_第2页
必修1第三章第4-5节力的合成 力的分解_第3页
必修1第三章第4-5节力的合成 力的分解_第4页
必修1第三章第4-5节力的合成 力的分解_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、力的合成、力的分解主讲:梁建兴 一、学习目标: 1. 理解合力、分力、力的合成和分解。 2. 掌握平行四边形定则的含义和使用方法,会进行力的合成和分解。3. 会进行受力分析,会用正交分解法求解力的平衡问题。二、重点、难点:重点:1. 理解什么是等效替代法。2. 熟练掌握平行四边形定则的应用。3. 会根据力的效果对其进行分解并利用三角形关系求解分力或合力。 4. 会利用正交分解法求解力的平衡问题。难点:1.“平行四边形定则”的理解和应用。2. 按照力的实际效果分解力。3. 正交分解方法的应用。三、考点分析:本节内容是力学的基础内容,对本节课内容的考查常和物体的平衡,牛顿运动定律及运动结合起来综合

2、出题,是高考考查的重点。 内容和要求考点细目出题方式合力、分力、力的合成、力的分解,共点力合力和分力的等效替代关系选择题、计算题平行四边形定则在力的合成和分解中的应用正交分解法在力的合成与分解中的应用分析方法等效替代法,正交分解法,平行四边形定则,矢量三角形法选择题、计算题一、1、合力与分力(1)合力与分力的概念:一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。(2)合力与分力的关系:合力与分力之间是一种等效替代的关系。一个物体同时受到几个力的作用时,如果用另一个力来代替这几个力而作用效果不变,这个力就叫那几个力的合力,但必须要明确合力

3、是虚设的等效力,并非是真实存在的力。合力没有性质可言,也找不到施力物体,合力与它的几个分力可以等效替代,但不能共存,否则就添加了力。一个力可以有多个分力,即一个力的作用效果可以与多个力的作用效果相同。当然,多个力的作用效果也可以用一个力来代替。2、共点力(1)概念:几个力如果都作用在物体的同一点,或者它们的作用线相交于同一点,则这几个力叫共点力。(2)一个具体的物体,所受的各个力的作用点并非完全在同一个点上,若这个物体的形状、大小对所研究的问题没有影响,我们就认为物体所受到的力就是共点力。如图甲所示,我们可以认为拉力F、摩擦力Ff及支持力FN都与重力G作用于同一点O。又如图乙所示,棒受到的力也

4、是共点力。甲乙3、力的合成:概念:求几个力的合力叫力的合成。力的合成的本质:力的合成就是找一个力去代替几个已知的力,而不改变其作用效果。求合力的基本方法利用平行四边形定则。 平行四边形定则内容:如果用表示两个共点力F1和F2的线段为邻边作平行四边形,那么,合力F的大小和方向就可以用这两个邻边之间的对角线表示出来。这种方法叫做力的平行四边形定则。注意:平行四边形定则只适用于共点力。利用平行四边形定则求解合力常用两种求解方法. 图解法:从力的作用点起,按两个力的作用方向,用同一个标度作出两个力F1、F2,并构成一个平行四边形,这个平行四边形的对角线的长度按同样的比例表示合力的大小,对角线的方向就是

5、合力的方向,用量角器直接量出合力F与某一个力(如F1)的夹角,如图所示。图中F140N,F250N,用直尺量出对角线长度,按比例得出合力F80N,合力F与分力F1的夹角约为30°。注意:使用图解法时,应先确定力的标度,在同一幅图上各个力都必须采用同一个标度,并且合力、分力的比例要适当,虚线、实线要分清。图解法的优点是简单、直观,缺点是不够精确。. 计算法:找三角形利用边角关系求解如下图所示,当两个力F1、F2互相垂直时,以两个分力F1、F2为邻边画出的力的平行四边形为一矩形,其合力F的大小为。设合力与其中一个分力(如F1)的夹角为,由三角知识可得:。由此即可确定合力的方向。分力的大小

6、与合力的大小的关系a. 两个分力同向,合力大小为两个分力之和。,方向不变。b. 两个分力反向,合力大小为两个分力之差。,方向与较大的力的方向相同。c. 两个分力间的夹角越大,合力的大小越小。4、力的分解的概念(1)分力:几个力共同作用产生的效果跟原来一个力作用产生的效果相同,这几个力就叫做原来那个力的分力。(2)力的分解:求一个已知力的分力叫做力的分解。注意:力的分解就是找几个力来代替原来的一个力,而不改变其作用效果。合力与分力间是等效替代的关系。实际情况中如何根据力的作用效果进行分解。5、力的分解的方法(1)力的分解法则力的平行四边形定则。力的分解是力的合成的逆运算,同样遵守平行四边形定则。

7、即把已知力作为平行四边形的对角线,那么与已知力共点的两条邻边就表示已知力的两个分力的大小和方向。注意:一个力可以分解为无数多对分力。如图所示,要确定一个力的两个分力,一定要有定解的条件。(2)对力分解时有解、无解的讨论力分解时有解或无解,简单地说就是代表合力的对角线与给定的代表分力的有向线段是否能构成平行四边形(或三角形),如果能构成平行四边形(或三角形),说明该合力可以分解成给定的分力,即有解。如果不能构成平行四边形(或三角形),说明该合力不能按给定的分力分解,即无解。具体情况有以下几种:已知两分力的方向(不在同一直线上)。如图所示,要求把已知力分解成沿OA、OB方向的两个分力,可以从F的箭

8、头处开始作OA、OB的平行线,画出力的平行四边形,即可得两分力F1、F2。已知一个分力的大小和方向。如图所示,已知一个分力为F1,则先连接合力F和分力F1的箭头,即为平行四边形的另一邻边,作出平行四边形,可得另一分力F2。已知两个分力的大小,有两解。已知一个分力的大小和另一个分力的方向,以表示合力F的线段末端为圆心,以表示的大小的线段长度为半径作圆。. 当时,圆与F1无交点,此时无解,如图甲所示。甲. 当时,圆与相切,此时有一解,如图乙所示。乙. 当时,圆与有两交点,此时有两解,如图丙所示。丙. 当时,圆与只有一个交点,此时只有一解,如图丁所示。丁(3)力的正交分解法1)当物体受力较多时,我们

9、常把物体受力沿互相垂直的两个方向分解,根据0,0 列方程求解。 把一个力分解成两个互相垂直的分力的方法叫做力的正交分解法。基本思想:力的等效与替代正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算解决矢量运算。设已知力为F,现在要把它分解成两个分别沿x轴和y轴的分力。如图所示,将力F沿力x、y方向分解,可得:注意:恰当地建立直角坐标系xOy,多数情况选共点力作用的交点为坐标原点,坐标轴方向的选择具有任意性,原则是:使坐标轴与尽量多的力重合,使需要分解的力尽量少和容易分解。将各力沿两坐标轴依次分解为互相垂直的两个分力。注意:与坐标轴正方向同向的分力取正值,与坐标轴负方向同向的分力

10、取负值。2)平衡状态:使物体保持静止状态或匀速直线运动状态共点力作用下物体的平衡条件:物体受到的合外力为零。即F合0说明:物体受到N个共点力作用而处于平衡状态时,取出其中的一个力,则这个力必与剩下的(N1)个力的合力等大反向。若采用正交分解法求平衡问题,则其平衡条件为:Fx合0,Fy合0;知识点一:对合力、分力、共点力的理解【例1】下列关于合力与分力的叙述,不正确的是( )A. 一个物体受到几个力的作用,同时也受到这几个力的合力的作用B. 几个力的合力总是大于它各个分力中最小的力C. 合力和它相应的分力对物体的作用效果相同D. 力的合成就是把几个力的作用效果用一个力来代替【例2】下面关于共点力

11、的说法中正确的是( )A. 物体受到的外力一定是共点力B. 共点力一定是力的作用点在物体上的同一点上C. 共点力可以是几个力的作用点在物体的同一点上,也可以是几个力的作用线交于同一点D. 以上说法都不对知识点二:力的合成与平行四边形定则的理解和应用【例1】有两个共点力,F12N,F24N,它们的合力F的大小可能是( ) A. 1N B. 5N C. 7N D. 9N拓展1、大小分别是5 N、7 N、9 N的三个力的合力F的大小范围是( )A. 2 NF20 N B. 3 NF21 N C. 0F20 N D. 0F21 N【例2】如图所示,AB为半圆的一条直径,P点为圆周上的一点,在P点作用了

12、三个共点力F1、F2、F3,求它们的合力。【例3】两位同学共同提一桶水,水和桶的总质量是15 kg,两人的手臂与竖直方向的夹角都是30°,则这两位同学所用的力相同,大小为_。拓展2、如图,跳伞运动员打开伞后经过一段时间,将在空中保持匀速降落.已知运动员和他身上装备的总重力为G1,圆顶形降落伞伞面的重力为G2,伞面下有8条相同的拉线,一端与飞行员相连(拉线重力不计),另一端均匀分布在伞面边缘上(图中没有把拉线都画出来),每根拉线和竖直方向都成30°角。那么每根拉线上的张力大小为( )A. B. C. D. 知识点三:力的分解一个已知力的实际分力的确定方法基本步骤:【例1】如下

13、图甲所示,电灯的重力G10N,绳AO与顶板间夹角为45°,绳BO水平,则绳AO所受的拉力_;绳BO所受的拉力_。甲【例2】物体静止于光滑水平面上,力F作用于物体上的O点,现要使合力沿着OO方向,如下图所示,则必须同时再加一个力F,使F和F均在同一水平面上,则这个力的最小值为( )。A. B. C. D. 【例3】一位同学在厨房里帮助妈妈做菜时对菜刀产生了兴趣,他发现菜刀的刀刃前部和后部的薄厚程度不一样,刀刃前部的顶角小,后部的顶角大(如下图),他先后作出过几个猜想,其中合理的是( )。A. 刀刃前部和后部薄厚不匀,仅是为了打造方便,外形美观,跟使用功能无关B. 在刀背上加上同样的压力时,分开其他物体的力跟刀刃薄厚无关C. 在刀背上加上同样的压力时,顶角越大,分开其他物体的力越大D. 在刀背上加上同样的压力时,顶角越小,分开其他物体的力越大知识点四:正交分解法的应用用正交分解法求多个力的合力的基本思路是:1. 对研究对象进行受力分析。2. 建立直角坐标系,再把不在轴上的所有的力沿两个坐标轴方向垂直分解。3. 根据两个坐标轴方向列状态方程,解出未知量。【例1】在水平路面上用绳子拉一个重力为G200 N的木箱,绳子与水平路

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论