有关圆的直径和切线的综合题 教案_第1页
有关圆的直径和切线的综合题 教案_第2页
有关圆的直径和切线的综合题 教案_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、有关圆的直径和切线的综合题教学目标:1、掌握圆的切线的性质 2、培养学生分析问题与解决问题的能力教学重点:圆的切线的性质教学过程:一、创设情境今天,老师和同学们一起来研究圆中最最基本的图形。请看图:(投影显示)二、例题讲解例题:已知:AB是O的直径,点P在BA的延长线上,PT切O于T,若PT=10,PA=5,1、 不添加条件也不作辅助线 ,你能求出哪些线段的长? 解: PT2=PA·PB PB=20 AB=15 OA=OB=7.5 PO=12.5 小结:这里主要应用切割线定理2、 不增加条件但可以连结线段,请再设计问题,并解答; 连BT、AT, 求证:ATP TBP 求线段AT、BT

2、的长解 PT切O于T PTA=B TPA=BPT ATP TBP BT2+AT2=AB2 AT=3 BT=63、过T作O的弦TE,交AB于D,若ETA=TPA, (1) 求AE·AP的值(2) 比较线段TB与TE的大小E4、 TE平分BTA,交AB于D,且TD、TE的长是方程x2-3(k-2)x+k2+9=0的两根,求k的值;5、 若TEAB,垂足为D,以AB所在的直线为X轴,TE所在的直线为Y轴,建立直角坐标系,求出经过A、B、T的抛物线的解析式,并判断直线PT是否经过抛物线的顶点。Y yxDED X E三、课堂总结与圆有关的综合题大致可分为圆的论证型、方程与圆的结合型、函数与圆的结合型等几种类型问题。对于圆的论证型,它与常规几何题不同,起综合性更强,解法更灵活,有时还要用代数、三角函数等知识证明。对于方程与圆的结合型主要以二次方程、圆为背景,结合三角函数和其他代数知识,运用方程的有关知识和几何的有关定理来解决问题。对于函数与圆的结合型,主要以二次函数和圆为背景,结合其他代数知识,运用二次函数的有关性质和几何定理来解。练习:若PA、PB是关于x的方程x-ax+2=0的两根,(1)求P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论