![抛物线练习题_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/dd634e9c-b260-4d62-874b-c70d43063408/dd634e9c-b260-4d62-874b-c70d430634081.gif)
![抛物线练习题_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/dd634e9c-b260-4d62-874b-c70d43063408/dd634e9c-b260-4d62-874b-c70d430634082.gif)
![抛物线练习题_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/dd634e9c-b260-4d62-874b-c70d43063408/dd634e9c-b260-4d62-874b-c70d430634083.gif)
![抛物线练习题_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/dd634e9c-b260-4d62-874b-c70d43063408/dd634e9c-b260-4d62-874b-c70d430634084.gif)
![抛物线练习题_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/17/dd634e9c-b260-4d62-874b-c70d43063408/dd634e9c-b260-4d62-874b-c70d430634085.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1若抛物线上有一条长为6的动弦,则的中点到轴的最短距离为( )A BC1 D22抛物线的准线方程是( )A. B.C. D.3以坐标轴为对称轴,以原点为顶点且过圆的圆心的抛物线的方程是( )A.或B.C.或D.或4抛物线的焦点坐标是( )A B C D5抛物线的焦点坐标是A.(,) B.() C.() D.()6抛物线的准线方程为()ABCD7对抛物线,下列判断正确的是( )A焦点坐标是 B焦点坐标是C准线方程是 D准线方程是8已知拋物线的焦点,则拋物线的标准方程是( )A BC D9设F为抛物线C:y2=4x的焦点,曲线y=(k>0)与C交于点P,PFx轴,则k=(A)(B)1 (C)
2、(D)210过点(2,0)与抛物线只有一个公共点的直线有A. 1条 B. 2条 C. 3条 D. 无数条11抛物线 的焦点坐标为( ) A B C D12抛物线的焦点坐标是( )A B C D13过抛物线的焦点F的直线交该抛物线于点A. 若|AF|=3,则点A的坐标为A.(2,)B.(2,) C.(2,) D.(1,±2)14抛物线上点P的纵坐标是4,则其焦点F到点P的距离为( )A.3 B4 C5 D615已知点P是抛物线y2=2x上的一个动点,则点P到点M(0,2)的距离与点P到该抛物线准线的距离之和的最小值为( )A3 B C D16(2005江苏)抛物线y=4x2上的一点M到
3、焦点的距离为1,则点M的纵坐标是( )A B C D017点M(0,)是抛物线2=2P(P0)上一点, 若点M到该抛物线的焦点的距离为2,则点M到坐标原点的距离为( )A、 B、 C、 D、18过抛物线y22px(p>0)的焦点F的直线l交抛物线于点A、B(如图所示),交其准线于点C,若|BC|2|BF|,且|AF|3,则此抛物线的方程为( )A、y29xB、y26xC、y23x D、y2x19已知AB是抛物线的一条过焦点的弦,且|AB|=4,则AB中点C的横坐标是( )A2 B C D20已知抛物线的焦点,则抛物线的标准方程是( )A B C D21直线ykx2与抛物线y28x只有一个
4、公共点,则k的值为( )A1 B0C1或0 D1或322已知抛物线,以为中点作抛物线的弦,则这条弦所在直线的方程为( )A BC D23过抛物线y2=8x的焦点F作倾斜角为135°的直线交抛物线于A,B两点,则弦AB的长为( )A4 B8 C12 D1624抛物线的焦点到准线的距离为25已知是抛物线上一点,是该抛物线的焦点,则以为直径且过(0,2)的圆的标准方程为.26抛物线的焦点恰好为双曲线的右焦点,则_27抛物线上的一点到其焦点距离为3,则该点坐标为28若抛物线上一点M到焦点的距离为3,则点M到轴的距离为29抛物线上的两点到焦点的距离之和为,则线段的中点到轴的距离是30抛物线上一
5、点到焦点的距离为,则点到轴的距离是31过抛物线的焦点作倾斜角为直线,直线与抛物线相交与,两点,则弦的长是.一、解答题(解答时应写出文字说明,证明过程或演算步骤)32求下列各曲线的标准方程(1)实轴长为12,离心率为,焦点在x轴上的椭圆;(2)抛物线的焦点是双曲线的左顶点33(1)已知抛物线的顶点在原点,准线方程为,求抛物线的标准方程;(2)已知双曲线的焦点在x轴上,且过点(,-),(,),求双曲线的标准方程。参考答案1D【解析】试题分析:设,的中点到轴的距离为,如下图所示,根据抛物线的定义,有,故,最短距离为.考点:抛物线的概念.2D【解析】试题分析:由题意得,抛物线的方程可化为,所以,且开口
6、向上,所以抛物线的准线方程为,故选D.考点:抛物线的几何性质.3A【解析】试题分析:由题意得,圆的圆心坐标为,当抛物线的开口向右时,设方程为,代入得,所以抛物线的方程为;当抛物线的开口向下时,设方程为,代入得,所以抛物线的方程为,即,故选A.考点:抛物线的标准方程.4C【解析】试题分析:又焦点在轴,故选C.考点:抛物线的标准方程及其性质.【易错点晴】本题主要考查抛物线的标准方程及其性质,题型较简单,但很容易犯错,属于易错题型.要解好此类题型应牢牢掌握抛物线方程的四种标准形式:,在解题之前应先判断题干中的方程是否是标准方程,如果不是标准方程应将其化为标准方程,并应注意:焦点中非零坐标是一次项系数
7、的四分之一.5B【解析】试题分析:抛物线的标准形式,所以焦点坐标是,故选B.考点:1、抛物线定义及其标准方程.6D【解析】试题分析:,焦点在轴负半轴上,准线方程为考点:抛物线的性质7C【解析】试题分析:因为,所以,又焦点在轴上,焦点坐标是,准线方程是,故选C.考点:抛物线的方程及性质.8B【解析】试题分析:由题意知:拋物线的标准方程是,选B.考点:抛物线性质9D【解析】试题分析:因为是抛物线的焦点,所以,又因为曲线与交于点,轴,所以,所以,选D.【考点】 抛物线的性质,反比例函数的性质【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对于函数y=,当时,在,上是减函数,当时,在,上是增函数.
8、10C【解析】试题分析:由题:开口向上,点(2,0)在x轴上。则其中2条为:另可设:,代入得:,则第3条直线为:考点:直线与抛物线的位置关系.11D【解析】试题分析:,焦点为考点:抛物线方程及性质12D【解析】试题分析:由题意得,抛物线的标准方程为,所以,且开口向下,所以抛物线的交点坐标为,故选D.考点:抛物线的标准方程及其简单的几何性质.13C【解析】试题分析:抛物线的焦点, 设点A的坐标为,所以,解得,故选C.考点:两点间的距离公式;抛物线的性质.14C【解析】试题分析:依题意可知抛物线化为抛,抛物线的准线方程为y=-1,点P到准线的距离为4+1=5,根据抛物线的定义可知点P与抛物线焦点的
9、距离就是点P与抛物线准线的距离,点A与抛物线焦点的距离为5考点:抛物线的简单性质15B【解析】试题分析:先求出抛物线的焦点坐标,再由抛物线的定义可得d=|PF|+|PM|MF|,再求出|MF|的值即可解:依题设P在抛物线准线的投影为P,抛物线的焦点为F,则F(,0),依抛物线的定义知P到该抛物线准线的距离为|PP|=|PF|,则点P到点M(0,2)的距离与P到该抛物线准线的距离之和,d=|PF|+|PM|MF|=即有当M,P,F三点共线时,取得最小值,为故选:B考点:抛物线的简单性质16B【解析】试题分析:令M(x0,y0),则由抛物线的定义得,解得答案解:抛物线的标准方程为,准线方程为,令M
10、(x0,y0),则由抛物线的定义得,即故选:B考点:抛物线的简单性质17D【解析】试题分析:抛物线()的准线方程是,因为点到该抛物线的焦点的距离为,所以,解得:,所以该抛物线的方程是,因为点是抛物线上的一点,所以,所以点到坐标原点的距离是,故选D考点:1、抛物线的定义;2、抛物线的标准方程18C【解析】试题分析:点到抛物线准线的距离为,由抛物线的定义得点到准线的距离为,又由,则,与准线夹角为,则直线的倾斜角为由,如图,作,则,则,故抛物线方程为考点:抛物线的方程【方法点睛】(1)求抛物线的标准方程常用待定系数法, 因为未知数中只有,所以只需要一个条件即可;(2)因为抛物线方程有四种标准形式,因
11、此求抛物线方程时,需要先定位,再定量;(3)利用抛物线方程确定及应用其焦点、准线等性质时,关键是将抛物线方程转化为标准方程;(4)要结合图形分析,灵活运用平面几何的性质以图注解19C 【解析】试题分析:设,则,即,则,即AB中点C的横坐标是考点:直线与抛物线的位置关系20B【解析】试题分析:以为焦点的抛物线的标准方程为.考点:抛物线的焦点和抛物线的标准方程.21C【解析】试题分析:直线ykx2与抛物线y28x只有一个公共点,只需联立方程组把(1)代入(2)得:,此时直线与抛物线相切,又因为时,直线为与抛物线的对称轴平行,只有一个公共点,那么考点:直线与抛物线的位置关系;22B【解析】试题分析:
12、设直线与抛物线相交于,由已知,则-得:,故,所以直线方程为考点:直线与抛物线的位置关系、直线方程23D【解析】试题分析:抛物线y2=8x的焦点F(2,0),过焦点的直线方程为联立,求出根据弦长公式,可求得弦AB=16.考点:弦长公式.24【解析】试题分析:由题意得,因为抛物线,即,即焦点到准线的距离为.考点:抛物线的性质25【解析】试题分析:设,由题知,由抛物线的定义知,圆的直径为=,圆心为,由题知= ,解得,所以圆心为,半径为,所以所求圆的标准方程为.考点:抛物线的性质;圆的方程.【方法点晴】本题主要考查了抛物线的标准方程及其简单的几何性质、圆的标准方程的求解,着重考查了学生的分析问题和解答
13、问题的能力、转化与化归思想的应用,本题的解答中由抛物线的定义知,圆的直径为=,圆心为,根据题设列出方程,得到圆心为坐标和圆的半径,即可求解圆的标准方程.268【解析】试题分析:先求出双曲线的右焦点,得到抛物线的焦点,依据p的意义求出它的值双曲线的右焦点为(2,0),故抛物线的焦点为(2,0),考点:抛物线的简单性质;双曲线的简单性质27【解析】试题分析:由题意知抛物线的焦点为,准线为;根据抛物线的定义:抛物线上的点到焦点的距离等于该点到准线的距离,知该点的横坐标为2,代入抛物线方程得该点坐标为考点:1、抛物线的定义;2、抛物线的性质【技巧点晴】本题主要考查的是抛物线的定义和抛物线的性质,属于容
14、易题目;高考中对抛物线的考查有选择填空题和解答题,选择填空题目一般考查抛物线的定义,根据定义把到焦点的距离转化为该点到准线的距离,从而求出该点的坐标282【解析】试题分析:由抛物线方程可知其准线为.由抛物线的定义可知点到准线的距离为3,所以点到轴的距离为.考点:抛物线的定义.29【解析】试题分析:设为抛物线的焦点,则,抛物线的准线方程为设即线段的中点得横坐标为则线段的中点到轴的距离是考点:抛物线的定义30【解析】试题分析:化为,即抛物线的焦点为,设点,则,即,即点到轴的距离是考点:抛物线的定义3116【解析】试题分析:抛物线的焦点为,倾斜角为说明斜率为1,直线方程,与联立方程组,消去得:,设,则,则考点:1.焦半径公式和焦点弦公式;2.设而不求;32(1)(2)【解析】试题分析:(1)由实轴求得值,由离心率求得值,进而得到值,得到椭圆方程;(2)由双曲线方程可求得其左顶点坐标,即可得到抛物线焦点,从而得到抛物线方程试题解析:(1)设椭圆的标准方程为由已知,所以椭圆的标准
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程合同管理标准2025
- 2025年墓地订购合同标准文本
- 2025年东城区策划框架协议采购制度培训盛典
- 2025年电力输配电线路建设合同
- 2025年双方资金预付款项合作协议书
- 2025年企业内部承包授权协议
- 2025年个体经营者向国有公司借款协议范本
- 2025年健身中心合作协议版
- 2025年个人租赁商铺合同范本
- 房地产合同在2025年的履行状况与改进策略
- 电气工程师生涯人物访谈报告
- 信用信息平台建设方案
- 大地保险理赔标准
- 车险经营情况分析报告模板
- 农业一张图建设方案
- 安徽药都银行2023年员工招聘考试参考题库含答案详解
- 心肌梗死的心电图改变
- 七年级上册数学思维导图·李树茂帮你简单学数学
- 三星SHP-DP728指纹锁说明书
- 预应力锚索张拉及封锚
- 烤烟生产沿革
评论
0/150
提交评论