版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学选修高中数学选修2-3-条件概率条件概率 一般地,在已知另一事件一般地,在已知另一事件A A发生的前提下,事件发生的前提下,事件B B发生的可能性大小不一定再是发生的可能性大小不一定再是P(B).P(B).条件的附加意味着对样本空间进行压缩条件的附加意味着对样本空间进行压缩. . 探究:探究: 三张奖券中只有一张能中奖,现分别由三名同学三张奖券中只有一张能中奖,现分别由三名同学无放回的抽取,问最后一名同学抽到中奖奖券的概率无放回的抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小。是否比前两名同学小。思考思考1 如果已经知道第一名同学没有抽到中奖奖券,那如果已经知道第一名同学没有
2、抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率又是多少?么最后一名同学抽到中奖奖券的概率又是多少? 已知第一名同学的抽奖结果为什么会影响最已知第一名同学的抽奖结果为什么会影响最后一名同学抽到中奖奖券的概率呢?后一名同学抽到中奖奖券的概率呢?BAP(B |A)相当于把看作新的相当于把看作新的基本事件空间求基本事件空间求发生的发生的概率概率()()()()(|)( )( )( )()n ABn ABP ABnP B An An AP An思考思考2 对于上面的事件对于上面的事件A和事件和事件B,P(B|A)与它们的概与它们的概率有什么关系呢?率有什么关系呢?P(B |A)称为在已知事件称为在已知
3、事件A发生的条件发生的条件下事件下事件B发生的条件概率发生的条件概率1.条件概率条件概率 对任意事件对任意事件A和事件和事件B,在已知事件,在已知事件A发生的发生的条件下条件下,事件事件B发生的概率,叫做发生的概率,叫做条件概率条件概率,记作记作P(B |A).基本概念基本概念2.条件概率计算公式条件概率计算公式:()(|)( )P ABP B AP A注注: :0(|)P B A1; ; 几几何何解解释释: : 可可加加性性: 如如果果BC和和互互斥斥, 那那么么 ()|(|)(|)PBCAP B AP C A BA.)AB(P)AB(P,AB)AB(P,AB)AB(P,.B,)AB(P,A
4、B,)AB(PAA大大比比一一般般来来说说中中样样本本点点数数中中样样本本点点数数中中样样本本点点数数中中样样本本点点数数则则用用古古典典概概率率公公式式发发生生的的概概率率计计算算中中表表示示在在缩缩小小的的样样本本空空间间而而的的概概率率发发生生计计算算中中表表示示在在样样本本空空间间 3.概率概率 P(B|A)与与P(AB)的区别与联系的区别与联系基本概念基本概念例题讲解:例题讲解:例例1在在5道题中有道题中有3道理科题和道理科题和2道文科题,如果不放回道文科题,如果不放回的依次抽取的依次抽取2道题道题(1)第一次抽到理科题的概率)第一次抽到理科题的概率(2)第一次与第二次都抽到理科题的
5、概率)第一次与第二次都抽到理科题的概率(3)第一次抽到理科题的条件下,第二次抽到理科)第一次抽到理科题的条件下,第二次抽到理科题的概率题的概率.例例 5 一张储蓄卡的密码共有一张储蓄卡的密码共有6位数字,每位数字都可从位数字,每位数字都可从09中任选一个。某人在银行自动取款机上取钱时,忘记中任选一个。某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,求:了密码的最后一位数字,求:(1)任意按最后一位数字,不超过)任意按最后一位数字,不超过2次就按对的概率;次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过)如果他记得密码的最后一位是偶数,不超过2次就按次就按 对的概率。对的概率
6、。例例 6 甲、乙两地都位于长江下游,根据一百多年的气象记甲、乙两地都位于长江下游,根据一百多年的气象记录,知道甲、乙两地一年中雨天占的比例分别为录,知道甲、乙两地一年中雨天占的比例分别为20%和和18%,两地同时下雨的比例为两地同时下雨的比例为12%,问:,问:(1)乙地为雨天时,甲地为雨天的概率为多少?)乙地为雨天时,甲地为雨天的概率为多少?(2)甲地为雨天时,乙地也为雨天的概率为多少?)甲地为雨天时,乙地也为雨天的概率为多少?例例 2 考虑恰有两个小孩的家庭考虑恰有两个小孩的家庭.(1)若已知)若已知 (假定生男生女为等可能)(假定生男生女为等可能) 某一家有一个女孩,求这家另一个是男孩
7、某一家有一个女孩,求这家另一个是男孩的概率;的概率;例例 7一个箱子中装有一个箱子中装有2n 个白球和(个白球和(2n-1)个黑球,)个黑球,一次摸出个一次摸出个n球球.(1)求摸到的都是白球的概率;求摸到的都是白球的概率;(2)在已知它们的颜色相同的情况下,求该颜色是白在已知它们的颜色相同的情况下,求该颜色是白色的概率。色的概率。例例 8 如图所示的正方形被平均分成如图所示的正方形被平均分成9个部分,向大个部分,向大正方形区域随机的投掷一个点(每次都能投中),正方形区域随机的投掷一个点(每次都能投中),设投中最左侧设投中最左侧3个小正方形的事件记为个小正方形的事件记为A,投中最上,投中最上面
8、面3个小正方形或中间的个小正方形或中间的1个小正方形的事件记为个小正方形的事件记为B,求求 P(A|B)。1.某种动物出生之后活到某种动物出生之后活到20岁的概率为岁的概率为0.7,活到活到25岁的概率为岁的概率为0.56,求现年为,求现年为20岁的这种岁的这种动物活到动物活到25岁的概率。岁的概率。解解 设设A表示表示“活到活到20岁岁”(即即20),B表示表示“活到活到25岁岁” (即即25)则则 ( )0.7, ( )0.56P AP B所求概率为所求概率为 ()( )()0.8( )( )P ABP BP B AP AP AAB0.560.560.70.75 5BAABB由于故,2.2
9、.抛掷一颗骰子抛掷一颗骰子, ,观察出现的点数观察出现的点数B=B=出现的点数是奇数出现的点数是奇数 ,A=A=出现的点数不超过出现的点数不超过33, 若已知出现的点数不超过若已知出现的点数不超过3 3,求出现的点数是奇数,求出现的点数是奇数的概率的概率 解:即事件解:即事件 A A 已发生,求事件已发生,求事件 B B 的概率的概率也就是求:(也就是求:(B BA A)A A B B 都发生,但样本空都发生,但样本空间缩小到只包含间缩小到只包含A A的样本点的样本点()2(|)( )3n ABP B An AB5 5A2 21 13 34,64,6 3. 设设 100 件产品中有件产品中有
10、70 件一等品,件一等品,25 件二等品,件二等品,规定一、二等品为合格品从中任取规定一、二等品为合格品从中任取1 件,求件,求 (1) 取得取得一等品的概率;一等品的概率;(2) 已知取得的是合格品,求它是一等已知取得的是合格品,求它是一等品的概率品的概率 解解设设B表示取得一等品,表示取得一等品,A表示取得合格品,则表示取得合格品,则 (1)因为因为100 件产品中有件产品中有 70 件一等品,件一等品, 70()0.7100P B (2)方法方法1:70()0.736895P B A 方法方法2: ()()( )P ABP B AP A因为因为95 件合格品中有件合格品中有 70 件一等品,所以件一等品,所以70 1000.736895100AB707095955 5BAABB4、5个乒乓球,其中个乒乓球,其中3个新的,个新的,2个旧的,每次取一个,不个旧的,每次取一个,不放回的取两次,求:放回的取两次,求:(1)第一次取到新球的概率;)第一次取到新球的概率;(2)第二次取到新球的概率;)第二次取到新球的概率;(3)在第一次取到新球的条件下第二次取到新球的概率。)在第一次取到新球的条件下第二次取到新球的概率。5、一只口袋内装有一只口袋内装有2个白球和个白球和2个黑球,那么个黑球,那么(1)先摸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 有关幼儿园防洪涝灾害应急预案(3篇)
- 领工资委托书
- 舞蹈培训班合作协议(3篇)
- 直播流程方案
- 门诊的年终总结
- 酒店员工述职报告汇编5篇
- 珍爱生命主题班会教案
- 23.5 位似图形 同步练习
- 江西上饶市2024-2025七年级历史期中试卷(含答案)
- 河北省秦皇岛市卢龙县2024-2025学年七年级上学期期中生物试题
- 广东省深圳市龙岗区多校2024-2025学年一年级(上)期中语文试卷(含答案部分解析)
- 河南省南阳市2023-2024学年高一上学期期中数学试题含答案
- 统编语文四年级上册第六单元教材解读及集体备课
- 2024年河南省军队文职(临床医学)高频备考核心试题库(含答案详解)
- 大学生职业规划大赛生涯发展
- 职业发展生涯报告
- 《HSK标准教程3》第10课
- GB/T 10125-2021人造气氛腐蚀试验盐雾试验
- 基础图案设计(课堂PPT)
- 幼儿园参观学校活动方案5篇
- 关于旅游景区游客满意度研究的文献综述
评论
0/150
提交评论