下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、3 用公式法求解一元二次方程【知识与技能】1.理解求根公式的推导过程和判别公式.2.使学生能熟练地运用公式法求解一元二次方程.【过程与方法】通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.【情感态度】让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.【教学重点】求根公式的推导和公式法的应用.【教学难点】理解求根公式的推导过程及判别公式的应用.一、情境导入,初步认识用配方法解方程:(1)x2+3x+2=0(2)2x2-3x+5=0【教学说明】学生板演,复习旧知.二、思考探究,获取新知1.探究:用配方法解方
2、程:ax2+bx+c=0(a0).分析:前面具体数字已做了很多,我们现在不妨把a、b、c也当成具体数字,根据配方法的解题步骤推下去.解:移项,得:ax2+bx=-c因为a0,所以方程两边同除以a,得:x2+x=配方,得:x2+x+()2=+()2即(x+)2=a0,4a20,当 b2-4ac0时,0x+= 即x=x1=,x2=【归纳总结】由上可知,一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac0时,将a、b、c代入式子x=(b2-4ac0),就可求出方程的根;(2)这个式子叫做一
3、元二次方程的求根公式;(3)利用求根公式解一元二次方程的方法叫公式法;(4)由求根公式可知,一元二次方程最多有两个实数根.用公式法解一元二次方程时,必须注意两点:(1)将a、b、c的值代入公式时,一定要注意符号不能出错;(2)式子b2-4ac0是公式的一部分.【教学说明】让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a0) 能否用配方法求出它的解,通过解方程发现归纳一元二次方程的求根公式.2.用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0;(2)3x2-2x+1=0;(3)4x2+x+1=0.【归纳总结】(1)当=b2-4ac0时,一元二次方程ax2+bx
4、+c=0(a0)有两个不相等的实数根,即x1=,x2=;(2)当=b2-4ac=0时,一元二次方程ax2+bx+c=0(a0)有两个相等实数根即x1=x2=-;(3)当=b2-4ac0的解集(用含a的式子表示).分析:要求ax+30的解集,就是求ax-3的解集,那么就转化为要判定a的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即 (-2a)2-4(a-2)(a+1)0,就可求出a的取值范围.解:关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+80a0即ax-3,x-3/a,所求不等式的解集为x-3/a.【教学说明】主体探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.四、师生互动,课堂小结本节课通过配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并掌握利用根的判别式判断一元二次方程根的情况.1.布置作业:教材“习题2.5”中第1、2题.2.完成创优作业中本课时“课时作业”部分.通过复习配方法使学生对一元二次方程的定义及解法有一个深
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学题库练习试卷A卷附答案
- 2024年度山西省高校教师资格证之高等教育法规强化训练试卷A卷附答案
- 2024年度年福建省高校教师资格证之高等教育学每日一练试卷B卷含答案
- 2024年数据采集传输系统项目资金筹措计划书代可行性研究报告
- 2024年阿米妥投资申请报告
- 第21章 恶性肿瘤流行病学课件
- 2024年产权商铺租赁买卖一体协议
- 2024合作社商用物业租赁协议范本
- 2024年农药采购协议:高效环保
- 2024年度玻璃钢材质化粪池购销协议
- 服务与服务意识培训课件
- 第5课《秋天的怀念》群文教学设计 统编版语文七年级上册
- 二年级家长会语文老师课件
- 冬季安全生产特点及预防措施
- 视频短片制作合同范本
- 结构加固改造之整体结构加固教学课件
- 高中数学-3.3 幂函数教学课件设计
- 抑郁症与睡眠障碍课件
- 创新思维与创业实验-东南大学中国大学mooc课后章节答案期末考试题库2023年
- 第九讲 全面依法治国PPT习概论2023优化版教学课件
- 内部控制学李晓慧课后参考答案
评论
0/150
提交评论