《三角形三边的关系》教学设计(共7页)_第1页
《三角形三边的关系》教学设计(共7页)_第2页
《三角形三边的关系》教学设计(共7页)_第3页
《三角形三边的关系》教学设计(共7页)_第4页
《三角形三边的关系》教学设计(共7页)_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上三角形三边的关系【教学内容】青岛版六三制四年级下册【教学目标】1理解三角形三边的关系:三角形的任意两边之和大于第三边;会用该结论解决生活中的问题。2经历发现问题、大胆猜想、动手实践、探索发现、归纳结论、初步应用三角形三边关系的活动过程。3.在实验过程中,培养学生自主学习与合作交流的意识和能力,增强学生勇于探索的精神,体会数学的实用价值,感受数学的严谨和探究成功的喜悦。【教学重、难点】三角形的三边关系的发现、验证、理解和应用。【教学准备】学具: 3,5,6,7,9厘米的小棒。教具:多媒体课件、实物展台。【教学过程】一、三角形知识前测师:同学们请看这些图片,你发现了我们学

2、过的哪种图形,(三角形)那什么是三角形呢?学生:由三条线段围成的图形是三角形。三条边师:谁能说下什么是围成?(每两条边首尾相接)二、问题探究,得出结论第一次活动:探究“任意三条线段一定能围成三角形吗?” 师:同学们对前面的知识掌握的很好,大家既然知道“三角形是由三条线段围成的图形”,那么“任意三条线段一定能围成三角形吗” ?请大家猜猜看!师:同学们的意见不一致,怎样才能知道到底哪种猜测是对的?生:可以做实验。师:对,用实验验证一下就可以知道哪种猜想是对的了。下面,用你手中的三根小棒代替三条线段,亲自围一围,看能不能围成三角形。比一比,谁的动手能力最强!(学生开始活动,教师巡视指导学生操作。)师

3、:请同学们停下来,我们调查一下同学们围成图形的情况。围成三角形的请举手,没有围成三角形的请举手。师:看来,有的围成了三角形,有的没有围成三角形,下面我们把各种不同的结果在展台上演示出来,来演示的同学,先要告诉我们你用的小棒的长度,再把你围成的最后图形摆出来。先请一个没有围成三角形的同学在展台上摆一摆,演示给大家看。生1:我用的三条线段分别是3厘米,4厘米,8厘米,这三根小棒没法围成三角形。师:(总结一下)看来,这三根小棒确实围不成三角形。(向全体同学询问:)谁的小棒和这一组小棒不一样,却也没有围成三角形?请来台上摆给大家看一看。生2:我用的小棒分别是4厘米,6厘米,10厘米,这三根小棒也没法围

4、成三角形,最后三条小棒都重合成一条直线上了。师:谁围成三角形了?也来台上展示给看一看。生3:我用的三条小棒分别是5厘米,6厘米,10厘米,这三根小棒能围成三角形。师:为了把刚才同学们演示的过程更准确、更清晰展现在大家面前,下面,老师用电脑演示一下。(这时,老师一边演示,一边说)第一种是这样的:结果,这三条线段围不成三角形;第二种是这样的:结果,这三条线段也围不成三角形;第三种是这样的:结果,这三条线段能围成三角形。 (把这三种情况的最后结果汇合在一张幻灯片上)师:这就是刚才三位同学展示的结果。从这验证的结果来看,你刚才的猜想是正确的还是错误的?现在大家可以得出什么结论?生:任意三条线段不一定能

5、围成三角形。师:(教师郑重总结):是的,任意三条线段不一定能围成三角形。师:我们刚才经历了“发现问题大胆猜想操作验证归纳结论”的过程。同学们刚才表现出了很强的动手能力,下面,请大家认真看这几个不同的图形,你有什么问题要问吗?学生提出的问题: “为什么前两种围不成三角形呢?”、“三条线段什么时候才能围成三角形?”等等。第二次活动:研究“什么样的三条线段围不成三角形?”师:同学们真爱动脑筋!提出了这么多值得研究的问题,下面,我们先来探索第一个问题:“为什么前两种围不成三角形呢”?请同学们先独立思考,想好以后,同桌互相说一说,交流一下。 (学生思考交流,教师融入学生之中倾听、参与学生的讨论。)全班交

6、流:(学生自由表达自己的意见。)师:好,发言先到这儿,通过刚才的猜测操作验证讨论交流的过程,老师发现同学们确实是既会动手、又会动脑筋的好学生。总结一下同学们的意见,(教师手指着图说:)当两条线段的和小于第三条线段时,围不成三角形;当两条线段的和等于第三条线段时,也围不成三角形。大家是不是这个意思?(课件上出现:围不成的图形和文字:两条线段的和小于第三条线段时,就围不成三角形;两条线段的和等于第三条线段,也围不成三角形。)第三次活动:探究“三角形三边之间的关系”。师:老师真为大家的精彩表现而高兴,同学们不仅有很强的动手能力,还特别会动脑筋,在我们的共同努力下,大家总结出了三条线段围不成三角形的原

7、因:“当两条线段的和小于第三条线段时,围不成三角形,当两条线段的和等于第三条线段时也围不成三角形”。(稍作停顿)咱们再来解决第二个问题:三条线段在什么情况下才能围成三角形?也就是说:围成后的三角形的三边之间有什么关系?下面我们就重点研究“三角形三边之间的关系”(揭示课题,并且板书“三角形三边关系”在黑板上,这时,课件上出现同学们刚才围成的三角形。)师:三角形的三条边之间究竟有什么关系?回想我们刚才的操作活动,结合刚才围成的三角形,请先独立思考,想好以后,和同桌交流一下。如果有困难,可以再用小棒摆一摆。(学生先自己静思,再同桌讨论,学生讨论时,教师融入学生中,参与学生的交流,倾听学生初步得出的结

8、论或发现。)(学生汇报,汇报时教师尽量让学生发表自己的意见。)生1:我发现这个三角形中有两边的和比第三边大。师:(看着课件上的三角形,问提出这个结论的同学)你指的是哪两条边的和?请你指一指,生1:指出自己发现的是哪两条边的和大于第三条边。师:好,我们把你的发现用数学式子写出来是什么?生1: 5+610师:一个很有价值的发现!其他同学还有什么新发现?生2:我发现另外的两条边加起来也大于第三条边,也就是6+105,5+106。师:老师把大家发现的关系式写出来:5+610,6+105,5+106。这个三角形中还有类似这样的关系式吗?生3:没有了,就这三个关系式。师:我们能不能用一句话来概括这三个关系

9、式所表示的三边之间的关系呢?思考一下,想好了,先说给同桌听一听。学生思考,归纳,同桌交流,然后全班交流。生4:三角形哪两条边加起来大于都第三边。生5:三角形任意两条边的和大于第三边生6:三角形中较短的两边的和大于第三边。师:指着三角形图:既然较短的两边的和都大于第三边了,那么一条最长的边和最短的边的和当然更大于第三条边了。其实还是:“三角形任意两条边的和大于第三边”。师:总结同学们的说法就是:三角形任意两条边的和大于第三边(语气加重,语速放慢,把每个字都送到每个学生的耳朵里,并板书结论。三角形任意两条边的和大于第三边。)第四次活动:画任意三角形,验证是否任意三角形都存在“任意两条边的和大于第三

10、边”这一结论。教师:是不是任意一个三角形的三边之间都有这样的规律?我们这个发现还需要再次验证。请每个同学在练习本上任意画一个三角形,测量三条边的长度,计算一下,是否任意三边都大于第三边。学生:在练习本上画三角形,验证,汇报,(老师板书出一个三角形的三边后,大家共同验证,并板书出三边之间的关系式,其余的只让学生说出数字,大家一起验证是否具有“三角形任意两边之和大于第三边”这样的关系。)教师:通过验证,我们发现只要是三角形,就一定存在“三角形的任意两边之和大于第三边”这样的关系。说明“三角形的任意两边之和大于第三边”这个规律是正确的。三、应用深化师:同学们,我们梳理一下前面研究的过程:发现问题大胆猜想多种方法验证归纳出结论;(课件上依次出现:问题猜想验证结论)一起探索出了三角形三边之间的关系:三角形任意两边的和大于第三边,下面我们就应用这个关系来解决问题。(学生开始能说出几条合适的长度。教师板书时有计划按从小到大的顺序板书出来,引导学生发现这样的线段有很多。)教师趁机追问:第三条小棒最长不能超过几厘米?最短不能少于几厘米?根据学生的回答,教师板书:3第三边11五:说说收获,相互评价教师:这一节课你有什么感受和收获? 你是通过哪些方法获得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论