版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 第三篇 对称性与不变性对称性的重要意义:伽利略变换下的不变性牛顿力学的基石之一。 洛仑兹变换下的不变性相对论的基石之一。对称性守恒律(量)21世纪的重大问题之一:理论越来越对称,实验越来越多地发现不对称 “矛盾”?!(参见李政道物理学的挑战)本篇主要内容:1、转动对称性问题自旋与角动量;2、粒子交换对称性问题全同粒子问题;3、时空交换对称性问题对称性与守恒律问题。第八章 自旋与角动量8.1 电子自旋1925年实验提出1928年相对论波动力学自动从理论上引入量子力学。自旋 描述微观粒子特征的基本物理量。一、 关于自旋的实验事实(原子物理已讨论) 纳黄线的精细结构;复杂(反常)塞曼效应;斯特恩-
2、盖拉赫实验。为了解释实验现象,引入新的自由度(在内禀空间中)。二、乌伦贝克-哥德斯密特假设1、 每个电子具有自旋角动量,它在空间任何方向上(取作z轴)的投影只能取两个值 。2、 每个电子的自旋磁矩与自旋角动量的关系为 。 自旋磁矩与自旋角动量的比值称电子自旋的回转磁比率: 朗德因子。与轨道角动量的回转比率比较: 朗德因子,知。注意:轨道角动量有经典对应 ,自旋角动量没有经典对应。如果设想为经典自转违背相对论。自旋是内禀自由度(对经典讲,是全新的概念)8.2 自旋算符与自旋波函数问题:自旋算符如何定义?自旋如何描述?基本思路 由对易关系定义算符。(无经典对应)已知“轨道”: 。一、自旋算符的对易
3、关系及自旋算符的本征值定义: 实验表明:。类比: 角量子数。有 自旋量子数。二、泡利算符的对易关系及泡利算符的本征值令 泡利算符 。反对易关系: 。易知 三、自旋算符在表象的矩阵表示表象中 。现在求: 令 : 。:。: , 取最简形式,有 。这样自旋算符的矩阵表示就全部求出: 相应的泡利矩阵为: 四、电子自旋波函数取-表象:有 即, 。取有 ,构成正交归一完备集。任一自旋波函数可以展开成 。其中, 电子自旋向上的几率;电子自旋向下的几率。归一化要求有 。 引导学生自学教材P290-293的例题1-3。例:教材P294 例4。(只讲思路,不讲计算细节) 求的本征函数和本征值。求该本征态中的可能值
4、、相应几率和平均值。解: 。本征值方程为 。由久期方程 。将代入方程求a,得 由归一化条件,得 。于是有。同理得。将用展开 ,的几率;的几率。于是有。同理讨论的相关问题。作业:习题8.2、2,3,4,6。8.3 泡利方程 磁共振(重点讲清思路,不推导细节)一、考虑自旋后的电子波函数 将用展开,系数为的函数:。二、考虑自旋后的力学量算符一般形式: 。三、泡利方程将有电磁场的S-方程推广到包含自旋的情况。自旋磁矩 泡利方程。四、用分离变量法求解泡利方程令 。设 定态。(关于,前面已经讨论,本章注意力在自旋问题)五、顺磁共振和核磁共振1、自由电子在均匀恒定磁场中的运动: 守恒,电子的自旋状态要发生变
5、化(高能态低能态),必然要与外界交换能量。2、再加上正弦场: 。令 ,由可得 。3、电子自旋共振: 若t=0时,电子处于自旋向下态,即 。当外场(称为拉莫频率)时,有。此式表明,当 时,电子自旋向上的几率为1,自旋向下的几率为0。比较: z轴反转,能级跃迁。 可见,在半周期,与外界交换能量。这种在静磁场作用下,电子的磁能级分裂,并在弱交变磁场的作用下所引起的共振吸收和共振发射的现象,称为电子自旋共振。可用类似的方法讨论核磁共振(自学教材或参考有关文献)。8.4 角动量算符的基本性质(一般性讨论 代数法的实例)一、角动量算符的定义式: 。二、角动量算符的本征值谱 设 1、引入新算符一系列对易关系
6、 见教材P307 (9)(10)(11)。由此可得2、的本征值为 设m的上限为j,则 。 相邻的: 。可见 是的本征矢,本征值为,即有 。 同理有 。 个。3、的本征值为j为m的最大值,将作用于,并利用,有j的取值范围:设m有N个值,且已知 ,可见,j取零、整数和半整数。如轨道角动量j=l,电子自旋角动量。三、表象中角动量的矩阵表示已知 。问题: 由 (1) (2)的非零矩阵元为 对(1)式两边取共轭:,两边同乘以(1)式:,取实部 。非零矩阵元 ,取共轭 。再利用与的关系,得到非零矩阵元:,。作业:习题8.3、1,2,4;习题8.4、3。8.5 两个角动量的相加一、总角动量算符及其对易关系。
7、二、总角动量的本征值与本征矢1、无耦合表象与耦合表象 无耦合表象:以的共同本征态为基矢,记,有 耦合表象:以的共同本征态为基矢,记,有2、两种表象基矢之间的关系 C-G系数 将用展开 给定: 称为C-G系数,它是由“无耦合表象”到“耦合表象”的么正矩阵元。只要知道了C-G系数,就可以建立起两种基矢的关系。*三、C-G系数的求法及应用1、C-G系数不为零的条件(我们只给出结果,证明见教材);。2、C-G系数的计算,C-G系数表(计算非常复杂,实用中可直接查表略)。*8.6 光谱的精细结构耦合:能级分裂精细结构(同样的n,l,能级有两个)。*8.7 复杂(反常)塞曼效应弱磁场中:分裂数不是三个,间
8、隔也不尽相同。复杂(反常)塞曼效应8.8 自旋单态与三重态一、总自旋角动量及其对易关系。对于电子,。二、的共同本征态取为力学量完全集:,。的共同本征态有4个:,。取为力学量完全集,显然,都是的本征态,本征值分别为。问题是,它们是否是的本征矢?是的本征矢。证: 。而 , ,。 。同理可证明 。由 ,记的共同本征态为,则。不是的本征矢(自证)。但可以把的这两个本征态叠加,构成的本征态:令 ,要求 ,可得。由归一化条件 小结列表的共同本征态 S 1 1 1 0 三重态(对称) 1 -1 0 0 单态(反对称)作业:习题8.5、4,5;习题8.8、1,2,3。第九章 全同粒子9.1 全同性原理 全同粒
9、子体系的波函数一、全同粒子与全同性原理全同粒子:固有(内禀)性质(质量,电荷,自旋,)完全相同的粒子。量子力学中,全同粒子不可区分(经典可用轨道区分)全同性原理: 在全同粒子中,两全同粒子相互交换不改变体系的状态“全同性”不只是一个抽象的概念,它是一个可观测量见后面的讨论。(在量子力学中的粒子,要么“全同”,要么“很不同”。)二、的交换对称性交换算符。对两粒子体系,如氦原子中的两个电子:,显然,具有交换不变性交换对称性。推广到一般情况N个全同粒子组成的体系,具有交换不变性交换对称性 是一个守恒算符。三、波函数的交换性设 描述N个全同粒子组成的体系 。由全同性原理知与描述同一状态,即 。即交换对
10、称性全同粒子体系的波函数对粒子交换具有一定对称性:对称波函数;反对称波函数。守恒这种对称性不随时间而变化。四、波函数的交换对称性决定于粒子的自旋实验表明: 自旋为的半整数倍 费米子波函数是反对称的;自旋为的整数倍 玻色子波函数是对称的。五、全同费米体系的波函数 泡利不相容原理先以两粒子为例 忽略相互作用,如何由单粒子波函数构成体系的波函数? 有交换简并。问题:能用作为体系波函数吗?否!不满足反对称要求,必须反对称化:若两粒子处于同一状态,即 泡利不相容原理(1925)。可推广到N个粒子组成的体系 见教材:繁而不难,这种表述不便。实际应用将采用“二次量子化”处理 用“粒子数表象”。因全同粒子体系
11、 只数“数”,不标粒子坐标(不可区分)。六、全同玻色子体系的波函数以两粒子为例 波函数要对称化。1、 当时:。2、 当时:。推广到N个粒子体系的波函数请自学教材(略讲) 数学的排列组合问题。七、全同粒子体系的总波函数忽略自旋-轨道耦合:。波函数的交换对称性总波函数 空间波函数 自旋波函数费米子 反对称 对称 反对称 反对称 对称 玻色子 对称 对称 对称 反对称 反对称对二电子体系,总波函数的四种形式见教材P345。引导同学们自学教材中的例题 重点是P349 例2 如何构成总波函数。例:教材习题9.1、5 说明“全同性”是可以“观测”的。解: 没有交换对称性。两粒子的波函数可表为:。令,上式可
12、化成 ,略去与本题无关的质心运动部分,相对运动部分的波函数为在的球壳中找到另一个粒子的几率为 几率密度。 交换反对称波函数。,这样,反对称的相对运动波函数可表为。由此可算出 。 交换对称波函数。类似可以求得。作业:习题9.1、1,2,4。9.2 氦原子 仲氦和正氦(应用实例)* 分子的形成一、:。二、的本征值和本征函数:已知的单粒子波函数。三、零级近似波函数,。四、基态能级的计算,。实验:,误差5.3(因为并不太小)。用变分法计算,误差1.9。五、激发态能级的计算(只讲思路)设mn,激发态是二重简并,将零级近似波函数代入有, (“+”对称;“-”反对称) 两电子相互作用库仑能, 两电子交换能量
13、子效应解释化学共价键。交换密度 决定两波函数的重合程度。六、仲氦与正氦 氦原子中的电子波函数反对称: 单态仲氦, 三重态正氦。*补充内容 原子怎样结合成分子(只定性说明) 这是一直使化学家困惑的问题,直到量子力学产生之后才明白,共价键完全是一种量子力学效应。正因为原子中的电子运动服从量子力学规律,相同的两个原子之间才产生了引力(交换能A),从而形成共价键。1、 能量最小原理:若干粒子在一起时,能量最低状态是最稳定的平衡态。这是 物理学的一条普遍原理。远离的两个原子为什么会结合在一起构成分子呢?因为“结合在一起时的能量”(电子重叠的作用十分重要) “远离时的能量”。2、 化学键 离子键与共价键 离子键:如 容易理解,吸引力能量。 共价键:如(氢分子) 原子整体是中性的,是什么引力使它们结合在一起? 量子力学给化学家研究分子的形成和结构提供了一个根本性的强有力武器,从此产生了一门新的学科 量子化学。3、 氢分子假定原子核A,B不动,忽略自旋-轨道相互作用,则。 适当取近似波函数。如何选择?(基态)把相互作用作微扰,用两氢原子的基态波函数在满足对称性要求下构成: 三重态 单态由此得 三重态 单态()K库仑能;A交换能波函数对称化的结果量子力学效应。具体计算K,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023-2024学年全国小学四年级上科学仁爱版模拟试卷(含答案解析)
- 2024年吊车租赁合同
- 2024年丽江道路客运输从业资格证2024年考试题
- 2024年遵义驾驶员客运从业资格证模拟考试题库
- 2019年山东东营中考满分作文《成长的力量》
- 晚夜微雨问海棠 (中等难度版) 高清钢琴谱五线谱
- 2024年北京道路旅客运输从业资格证模拟考试
- 2024年河南客运资格证考几个科目内容
- 2024年支付信托报酬支付协议范本
- 2024年小车维修服务合同
- 高考语文复习:新高考散文创新题型分类汇编
- 银行间本币市场交易员资格考试真题模拟汇编(共732题)
- 向拉齐尼巴依卡同志学习ppt
- 管辖权异议申请书电子版下载
- 订单运营岗位职责
- 论文评审意见范文(通用7篇)
- 2020年12月大学英语四级CET4真题(3套)
- 2023年警示教育片《贪欲之祸》范文五篇
- 房地产项目委托开发管理合同全套文本、工程项目委托代建合同(商业代建)全套文本、项目代建合同
- 高中化学课程标准(2020版)
- 全国教育期刊杂志社网址投稿邮箱电话地址一览
评论
0/150
提交评论