版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、解析几何题型考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1若抛物线的焦点与椭圆的右焦点重合,则的值为( )A B C D考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆的右焦点为(2,0),所以抛物线的焦点为(2,0),则,考点2. 求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.例2已知抛物线y-x2+3上存在关于直线x+y=0对称的相异两点A、B,则|AB|等于A.3 B.4 C.3 D.4考查意图: 本题主要考查直线与圆锥曲线的位置关系和
2、距离公式的应用.解:设直线的方程为,由,进而可求出的中点,又由在直线上可求出,由弦长公式可求出例3如图,把椭圆的长轴分成等份,过每个分点作轴的垂线交椭圆的上半部分于七个点,是椭圆的一个焦点,则_.考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.解答过程:由椭圆的方程知考点3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用:(1)椭圆的离心率e(0,1) (e越大则椭圆越扁);(2) 双曲线的离心率e(1, ) (e越大则双曲线开口越大).例4已知双曲线的离心率为2,焦点是,则双曲线方程为A B C D考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等
3、基本概念.解答过程: 所以故选(A).例5已知双曲线,则双曲线右支上的点P到右焦点的距离与点P到右准线的距离之比等于( ) A. B. C. 2 D.4考查意图: 本题主要考查双曲线的性质和离心率e(1, ) 的有关知识的应用能力.解答过程:依题意可知 考点4.求最大(小)值求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.例6已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 .考查意图: 本题主要考查直线与抛物线的位置关系
4、,以及利用不等式求最大(小)值的方法.解:设过点P(4,0)的直线为故填32.考点5 圆锥曲线的基本概念和性质例7 在平面直角坐标系xOy中,已知圆心在第二象限、半径为2的圆C与直线y=x相切于坐标原点O.椭圆=1与圆C的一个交点到椭圆两焦点的距离之和为10.(1)求圆C的方程;(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由. 解答过程 (1) 设圆C 的圆心为 (m, n) 则 解得 所求的圆的方程为 (2) 由已知可得 , 椭圆的方程为 , 右焦点为 F( 4, 0) ; 假设存在Q点使,整理得 , 代入
5、得: , 因此不存在符合题意的Q点.例8 如图,曲线G的方程为.以原点为圆心,以 为半径的圆分别与曲线G和y轴的 正半轴相交于 A 与点B. 直线AB 与 x 轴相交于点C.()求点 A 的横坐标 a 与点 C 的横坐标c的关系式;()设曲线G上点D的横坐标为,求证:直线CD的斜率为定值.解答过程(I)由题意知,因为由于 (1)由点B(0,t),C(c,0)的坐标知,直线BC的方程为又因点A在直线BC上,故有将(1)代入上式,得解得 .(II)因为,所以直线CD的斜率为,所以直线CD的斜率为定值.例9已知椭圆,AB是它的一条弦,是弦AB的中点,若以点为焦点,椭圆E的右准线为相应准线的双曲线C和
6、直线AB交于点,若椭圆离心率e和双曲线离心率之间满足,求:(1)椭圆E的离心率;(2)双曲线C的方程.解答过程:(1)设A、B坐标分别为, 则,二式相减得: , 所以, 则;(2)椭圆E的右准线为,双曲线的离心率, 设是双曲线上任一点,则: , 两端平方且将代入得:或, 当时,双曲线方程为:,不合题意,舍去; 当时,双曲线方程为:,即为所求.考点6 利用向量求曲线方程和解决相关问题例10双曲线C与椭圆有相同的焦点,直线y=为C的一条渐近线.(1)求双曲线C的方程;(2)过点P(0,4)的直线,交双曲线C于A,B两点,交x轴于Q点(Q点与C的顶点不重合).当,且时,求Q点的坐标.考查意图: 本题
7、考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.解答过程:()设双曲线方程为, 由椭圆,求得两焦点为,对于双曲线,又为双曲线的一条渐近线 解得 ,双曲线的方程为()解法一:由题意知直线的斜率存在且不等于零.设的方程:,,则.,.在双曲线上, .同理有:若则直线过顶点,不合题意.是二次方程的两根.,,此时.所求的坐标为.解法二:由题意知直线的斜率存在且不等于零设的方程,则., 分的比为.由定比分点坐标公式得下同解法一解法三:由题意知直线的斜率存在且不等于零设的方程:,则., ., ,又, ,即.将代入得.,否则与渐近线平行.解法四:
8、由题意知直线l得斜率k存在且不等于零,设的方程:,,则,.同理.即.(*)又消去y得.当时,则直线l与双曲线得渐近线平行,不合题意,.由韦达定理有: 代入(*)式得.所求Q点的坐标为.例11 设动点P到点A(l,0)和B(1,0)的距离分别为d1和d2,APB2,且存在常数(01,使得d1d2 sin2(1)证明:动点P的轨迹C为双曲线,并求出C的方程;(2)过点B作直线交双曲线C的右支于M、N两点,试确定的范围,使·0,其中点O为坐标原点 解答过程解法1:(1)在中,即,即(常数),点的轨迹是以为焦点,实轴长的双曲线方程为:(2)设,当垂直于轴时,的方程为,在双曲线上即,因为,所以
9、当不垂直于轴时,设的方程为由得:,由题意知:,所以,于是:因为,且在双曲线右支上,所以由知,解法2:(1)同解法1(2)设,的中点为当时,因为,所以;当时,又所以;由得,由第二定义得所以于是由得因为,所以,又,解得:由知考点7 利用向量处理圆锥曲线中的最值问题例12设椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,过点的直线交椭圆E于A、B两点,且,求当的面积达到最大值时直线和椭圆E的方程.解答过程:因为椭圆的离心率为,故可设椭圆方程为,直线方程为,由得:,设,则又,故,即由得:,则,当,即时,面积取最大值,此时,即,所以,直线方程为,椭圆方程为.例13已知,且, 求的最大值和最小值.解答过
10、程:设,因为,且,所以,动点P的轨迹是以A、B为焦点,长轴长为6的椭圆,椭圆方程为,令,则,当时,取最大值,当时,取最小值.考点8 利用向量处理圆锥曲线中的取值范围问题例14(2006年福建卷)已知椭圆的左焦点为F,O为坐标原点.(I)求过点O、F,并且与椭圆的左准线相切的圆的方程;(II)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与轴交于点G,求点G横坐标的取值范围.考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考查平面解析几何的基本方法,考查运算能力和综合解题能力.解答过程:(I)圆过点O、F,圆心M在直线上.设则圆半径由得解得所求圆的方程为(II)
11、设直线AB的方程为代入整理得直线AB过椭圆的左焦点F,方程有两个不等实根.记中点则的垂直平分线NG的方程为令得点G横坐标的取值范围为例15已知双曲线C:,B是右顶点,F是右焦点,点A在x轴正半轴上,且满足成等比数列,过F作双曲线C在第一、三象限的渐近线的垂线,垂足为P,(1)求证:;(2)若与双曲线C的左、右两支分别相交于点D,E,求双曲线C的离心率e的取值范围.解答过程:(1)因成等比数列,故,即,直线:,由,故:,则:,即;(或,即)(2)由,由得:(或由)例16已知, (1)求点的轨迹C的方程; (2)若直线与曲线C交于A、B两点,且, 试求m的取值范围.解答过程:(1),因,故,即,故
12、P点的轨迹方程为.(2)由得:,设,A、B的中点为则,即A、B的中点为,则线段AB的垂直平分线为:,将的坐标代入,化简得:,则由得:,解之得或,又,所以,故m的取值范围是.考点9 利用向量处理圆锥曲线中的存在性问题例17已知A,B,C是长轴长为4的椭圆上的三点,点A是长轴的一个顶点,BC过椭圆的中心O,且,(1)求椭圆的方程;(2)如果椭圆上的两点P,Q使的平分线垂直于OA,是否总存在实数,使得?请说明理由;解答过程:(1)以O为原点,OA所在直线为x轴建立平面直角坐标系,则,设椭圆方程为,不妨设C在x轴上方,由椭圆的对称性,又,即为等腰直角三角形,由得:,代入椭圆方程得:,即,椭圆方程为;(
13、2)假设总存在实数,使得,即,由得,则,若设CP:,则CQ:,由,由得是方程的一个根,由韦达定理得:,以代k得,故,故,即总存在实数,使得.考点10 利用向量处理直线与圆锥曲线的关系问题例18设G、M分别是的重心和外心,且, (1)求点C的轨迹方程; (2)是否存在直线m,使m过点并且与点C的轨迹交于P、Q两点,且?若存在,求出直线m的方程;若不存在,请说明理由.解答过程:(1)设,则, 因为,所以,则, 由M为的外心,则,即, 整理得:;(2)假设直线m存在,设方程为, 由得:, 设,则, , 由得:, 即,解之得, 又点在椭圆的内部,直线m过点, 故存在直线m,其方程为.【专题训练与高考预
14、测】一、选择题1如果双曲线经过点,且它的两条渐近线方程是,那么双曲线方程是() A B C D2已知椭圆和双曲线有公共的焦点,那么双曲线的的渐近线方程为( ) A. B. C. D. 3已知为椭圆的焦点,M为椭圆上一点,垂直于x轴, 且,则椭圆的离心率为( ) A. B. C. D.4二次曲线,当时,该曲线的离心率e的取值范围是( ) A. B. C. D. 5直线m的方程为,双曲线C的方程为,若直线m与双曲线C的右支相交于不重合的两点,则实数k的取值范围是( ) A. B. C. D.6已知圆的方程为,若抛物线过点,且以圆的切线为准线,则抛物线的焦点的轨迹方程为( ) A. B. C. D.
15、 二、填空题7已知P是以、为焦点的椭圆上一点,若 ,则椭圆的离心率为 _ .8已知椭圆x2+2y2=12,A是x轴正方向上的一定点,若过点A,斜率为1的直线被椭圆截得的弦长为,点A的坐标是_ .9P是椭圆上的点,是椭圆的左右焦点,设,则k的最大值与最小值之差是_ .10给出下列命题: 圆关于点对称的圆的方程是;双曲线右支上一点P到左准线的距离为18,那么该点到右焦点的距离为;顶点在原点,对称轴是坐标轴,且经过点的抛物线方程只能是;P、Q是椭圆上的两个动点,O为原点,直线OP,OQ的斜率之积为,则等于定值20 .把你认为正确的命题的序号填在横线上_ .三、解答题11已知两点,动点P在y轴上的射影
16、为Q, (1)求动点P的轨迹E的方程; (2)设直线m过点A,斜率为k,当时,曲线E的上支上有且仅有一点C到直线m的距离为,试求k的值及此时点C的坐标.12如图,是双曲线C的两焦点,直线是双曲线C的右准线, 是双曲线C的两个顶点,点P是双曲线C右支上异于的一动点,直线、交双曲线C的右准线分别于M,N两点,(1)求双曲线C的方程;(2)求证:是定值.13已知的面积为S,且,建立如图所示坐标系,(1)若,求直线FQ的方程;(2)设,若以O为中心,F为焦点的椭圆过点Q,求当取得最小值时的椭圆方程.14已知点,点P在y轴上,点Q在x轴的正半轴上,点M在直线PQ上,且满足,(1)当点P在y轴上移动时,求
17、点M的轨迹C;(2)过点作直线m与轨迹C交于A、B两点,若在x轴上存在一点,使得为等边三角形,求的值.15已知椭圆的长、短轴端点分别为A、B,从此椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量(1)求椭圆的离心率e;(2)设Q是椭圆上任意一点, 、分别是左、右焦点,求 的取值范围;16已知两点M(-1,0),N(1,0)且点P使成公差小于零的等差数列,()点P的轨迹是什么曲线?()若点P坐标为,为的夹角,求tan【参考答案】一. 1C .提示,设双曲线方程为,将点代入求出即可.2D .因为双曲线的焦点在x轴上,故椭圆焦点为,双曲线焦点为,由得,所以,双曲线的渐近线为 .3C
18、.设,则, .4.C .曲线为双曲线,且,故选C;或用,来计算.5B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组.6B .数形结合,利用梯形中位线和椭圆的定义.二.7解:设c为为椭圆半焦距, . 又 解得: 选D8解:设A(x0,0)(x00),则直线的方程为y=x-x0,设直线与椭圆相交于P(x1,y1),Q(x2、y2),由 y=x-x0 可得3x2-4x0x+2x02-12=0, x2+2y2=12,则,即x02=4,又x00,x0=2,A(2,0)91; .10.三. 11解(1)设动点P的坐标为,则点,因为,所以,即动点P的轨迹方程为:;(2)设直线m:,依题意,点C在与直线m平行,且与m之间的距离为的直线上,设此直线为,由,即,把代入,整理得:,则,即,由得:,此时,由方程组 .12解:(1)依题意得:,所以, 所求双曲线C的方程为;(2)设,则,因为与共线,故,同理:,则,所以 .13解:(1)因为,则,设,则,解得,由,得,故,所以,PQ所在直线方程为或;(2)设,因为,则,由得:,又,则,易知,当时,最小,此时,设椭圆方程为,则,解得,所以,椭圆方程为 .14解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急救援-综合(党群)管理岗
- 2024年企业业绩对赌协议模板指南
- 2024年书法家作品授权协议
- 2024年房产及土地交易协议样式
- 2024年企业办公空间装潢协议样本
- 2024年度外籍专家劳动协议范本
- 2024年招标流程代理服务协议样本
- 2024年投资亏损补偿协议模板
- 2024年汽车贷款中介协议模板
- 城市广场特色文化墙绘画服务协议
- 镁合金行业发展分析及投资前景预测报告
- 室内维修方案
- 小学信息技术课堂与学科教学逆向融合管见 论文
- 军士生生涯规划
- 北师大版数学三年级上册全册分层作业设计含答案
- 认知障碍人员培训课件
- 中国艾滋病现状
- 国际业务基础知识培训
- 急诊科中的老年病急症救治
- 亚马逊账户安全培训内容
- 生活区消防安全培训课件
评论
0/150
提交评论