版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第35讲 曲线方程及圆锥曲线的综合问题备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一【课标要求】1由方程研究曲线,特别是圆锥曲线的几何性质问题常化为等式解决,要加强等价转化思想的训练;2通过圆锥曲线与方程的学习,进一步体会数形结合的思想;3了解圆锥曲线的简单应用二【命题走向】近年来圆锥曲线在高考中比较稳定,解答题往往以中档题或以押轴题形式出现,主要考察学生逻辑推理能力、运算能力,考察学生综合运用数学知识解决问题的能力。但圆锥曲线在新课标中化归到选学内容,要求有所降低,估计2007年高考对本讲的考察,仍将以以下三类题型为主1求曲线(或轨迹)的方程,对于这类问题,高考常常不给出图
2、形或不给出坐标系,以考察学生理解解析几何问题的基本思想方法和能力;2与圆锥曲线有关的最值问题、参数范围问题,这类问题的综合型较大,解题中需要根据具体问题、灵活运用解析几何、平面几何、函数、不等式、三角知识,正确的构造不等式或方程,体现了解析几何与其他数学知识的联系。预测2010年高考:1出现1道复合其它知识的圆锥曲线综合题;2可能出现1道考查求轨迹的选择题或填空题,也可能出现在解答题中间的小问三【要点精讲】1曲线方程(1)求曲线(图形)方程的方法及其具体步骤如下:步 骤含 义说 明1、“建”:建立坐标系;“设”:设动点坐标。建立适当的直角坐标系,用(x,y)表示曲线上任意一点M的坐标。(1)
3、所研究的问题已给出坐标系,即可直接设点。(2) 没有给出坐标系,首先要选取适当的坐标系。2、现(限):由限制条件,列出几何等式。写出适合条件P的点M的集合P=M|P(M)这是求曲线方程的重要一步,应仔细分析题意,使写出的条件简明正确。3、“代”:代换用坐标法表示条件P(M),列出方程f(x,y)=0常常用到一些公式。4、“化”:化简化方程f(x,y)=0为最简形式。要注意同解变形。5、证明证明化简以后的方程的解为坐标的点都是曲线上的点。化简的过程若是方程的同解变形,可以不要证明,变形过程中产生不增根或失根,应在所得方程中删去或补上(即要注意方程变量的取值范围)。这五个步骤(不包括证明)可浓缩为
4、五字“口诀”:建设现(限)代化”(2)求曲线方程的常见方法:直接法:也叫“五步法”,即按照求曲线方程的五个步骤来求解。这是求曲线方程的基本方法。转移代入法:这个方法又叫相关点法或坐标代换法。即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解。几何法:就是根据图形的几何性质而得到轨迹方程的方法参数法:根据题中给定的轨迹条件,用一个参数来分别动点的坐标,间接地把坐标x,y联系起来,得到用参数表示的方程。如果消去参数,就可以得到轨迹的普通方程。2圆锥曲线综合问题(1)圆锥曲线中的最值问题、范围问题通常有两类:一类是有关长度和面积的最值问题;一类是
5、圆锥曲线中有关的几何元素的最值问题。这些问题往往通过定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及观形、设参、转化、替换等途径来解决。解题时要注意函数思想的运用,要注意观察、分析图形的特征,将形和数结合起来。圆锥曲线的弦长求法:设圆锥曲线Cf(x,y)=0与直线ly=kx+b相交于A(x1,y1)、B(x2,y2)两点,则弦长|AB|为:若弦AB过圆锥曲线的焦点F,则可用焦半径求弦长,|AB|=|AF|+|BF|在解析几何中求最值,关键是建立所求量关于自变量的函数关系,再利用代数方法求出相应的最值注意点是要考虑曲线上点坐标(x,y)的取值范围(2)对称、存在性问题,与圆锥曲
6、线有关的证明问题它涉及到线段相等、角相等、直线平行、垂直的证明方法,以及定点、定值问题的判断方法。(3)实际应用题数学应用题是高考中必考的题型,随着高考改革的深入,同时课本上也出现了许多与圆锥曲线相关的实际应用问题,如桥梁的设计、探照灯反光镜的设计、声音探测,以及行星、人造卫星、彗星运行轨道的计算等 涉及与圆锥曲线有关的应用问题的解决关键是建立坐标系,合理选择曲线模型,然后转化为相应的数学问题作出定量或定性分析与判断,解题的一般思想是:(4)知识交汇题圆锥曲线经常和数列、三角、平面向量、不等式、推理知识结合到一块出现部分有较强区分度的综合题四【典例解析】题型1:求轨迹方程例1(1)一动圆与圆外
7、切,同时与圆内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线。(2)双曲线有动点,是曲线的两个焦点,求的重心的轨迹方程。解析:(1)(法一)设动圆圆心为,半径为,设已知圆的圆心分别为、,将圆方程分别配方得:,当与相切时,有 当与相切时,有 将两式的两边分别相加,得,即 移项再两边分别平方得: 两边再平方得:,整理得,所以,动圆圆心的轨迹方程是,轨迹是椭圆(法二)由解法一可得方程,由以上方程知,动圆圆心到点和的距离和是常数,所以点的轨迹是焦点为、,长轴长等于的椭圆,并且椭圆的中心在坐标原点,焦点在轴上,圆心轨迹方程为。(2)如图,设点坐标各为,在已知双曲线方程中,已知双曲线两焦点为,存在,由三
8、角形重心坐标公式有,即 。,。已知点在双曲线上,将上面结果代入已知曲线方程,有即所求重心的轨迹方程为:。点评:定义法求轨迹方程的一般方法、步骤;“转移法”求轨迹方程的方法例2(2009年广东卷文)(本小题满分14分)已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点.(1)求椭圆G的方程(2)求的面积(3)问是否存在圆包围椭圆G?请说明理由.解(1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:.(2 )点的坐标为 (3)若,由可知点(6,0)在圆外, 若,由可知点(-6,0)在圆外; 不论K为何值
9、圆都不能包围椭圆G.题型2:圆锥曲线中最值和范围问题例3(1)(2009辽宁卷理)以知F是双曲线的左焦点,是双曲线右支上的动点,则的最小值为 。【解析】注意到P点在双曲线的两只之间,且双曲线右焦点为F(4,0), 于是由双曲线性质|PF|PF|2a4 而|PA|PF|AF|5 两式相加得|PF|PA|9,当且仅当A、P、F三点共线时等号成立.【答案】9 (2)(2009重庆卷文、理)已知椭圆的左、右焦点分别为,若椭圆上存在一点使,则该椭圆的离心率的取值范围为 【解析1】因为在中,由正弦定理得则由已知,得,即设点由焦点半径公式,得则记得由椭圆的几何性质知,整理得解得,故椭圆的离心率【解析2】 由
10、解析1知由椭圆的定义知,由椭圆的几何性质知所以以下同解析1.【答案】 (3)(2009四川卷理)已知直线和直线,抛物线上一动点到直线和直线的距离之和的最小值是( )A.2 B.3 C. D.【考点定位】本小题考查抛物线的定义、点到直线的距离,综合题。【解析1】直线为抛物线的准线,由抛物线的定义知,P到的距离等于P到抛物线的焦点的距离,故本题化为在抛物线上找一个点使得到点和直线的距离之和最小,最小值为到直线的距离,即,故选择A。【解析2】如图,由题意可知【答案】A点评:由PAF成立的条件,再延伸到特殊情形P、A、F共线,从而得出这一关键结论例4(1)(2009江苏卷)(本题满分10分)在平面直角
11、坐标系中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在轴上。(1)求抛物线C的标准方程;(2)求过点F,且与直线OA垂直的直线的方程;(3)设过点的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为,求关于的表达式。 (2)(2009山东卷文)(本小题满分14分)设,在平面直角坐标系中,已知向量,向量,动点的轨迹为E.(1)求轨迹E的方程,并说明该方程所表示曲线的形状;(2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程;(3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一
12、个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.解(1)因为,所以, 即.当m=0时,方程表示两直线,方程为;当时, 方程表示的是圆当且时,方程表示的是椭圆; 当时,方程表示的是双曲线.(2).当时, 轨迹E的方程为,设圆心在原点的圆的一条切线为,解方程组得,即,要使切线与轨迹E恒有两个交点A,B, 则使=,即,即, 且,要使, 需使,即,所以, 即且, 即恒成立.所以又因为直线为圆心在原点的圆的一条切线,所以圆的半径为, 所求的圆为.当切线的斜率不存在时,切线为,与交于点或也满足.综上, 存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.(3)当时,轨
13、迹E的方程为,设直线的方程为,因为直线与圆C:(1<R<2)相切于A1, 由(2)知, 即 ,因为与轨迹E只有一个公共点B1,由(2)知得,即有唯一解则=, 即, 由得, 此时A,B重合为B1(x1,y1)点,由 中,所以, B1(x1,y1)点在椭圆上,所以,所以,在直角三角形OA1B1中,因为当且仅当时取等号,所以,即当时|A1B1|取得最大值,最大值为1.【命题立意】:本题主要考查了直线与圆的方程和位置关系,以及直线与椭圆的位置关系,可以通过解方程组法研究有没有交点问题,有几个交点的问题.题型3:证明问题和对称问题例5(1)如图,椭圆1(ab0)与过点A(2,0)B(0,1)
14、的直线有且只有一个公共点T,且椭圆的离心率e=.()求椭圆方程;()设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:ATM=AFT。解 (1)由题意: ,解得,所求椭圆方程为 (2)(2009天津卷文)(本小题满分14分)已知椭圆()的两个焦点分别为,过点的直线与椭圆相交于点A,B两点,且(求椭圆的离心率;()直线AB的斜率;()设点C与点A关于坐标原点对称,直线上有一点H(m,n)()在的外接圆上,求的值。解 (1)由,得,从而,整理得,故离心率(2)由(1)知,所以椭圆的方程可以写为设直线AB的方程为即由已知设则它们的坐标满足方程组消去y整理,得依题意,而,有题设知,点B为线段A
15、E的中点,所以联立三式,解得,将结果代入韦达定理中解得.(3)由(2)知,当时,得A由已知得线段的垂直平分线l的方程为直线l与x轴的交点是的外接圆的圆心,因此外接圆的方程为直线的方程为,于是点满足方程组由,解得,故当时,同理可得.、点评:本小题主要考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力。(3)在平面直角坐标系O中,直线与抛物线2相交于A、B两点求证:“如果直线过点T(3,0),那么3”是真命题;写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由解析: (3)证明:设过点T(3,0)的直线l交抛物线y2=2x于点A(x1,y
16、1)、B(x12,y2). 当直线l的钭率下存在时,直线l的方程为x=3,此时,直线l与抛物线相交于A(3,)、B(3,),=3。 当直线l的钭率存在时,设直线l的方程为y=k(x3),其中k0.当y2=2x得ky22y6k=0,则y1y2=6.y=k(x3) 又x1=y, x2=y,=x1x2+y1y2=3.综上所述, 命题“如果直线l过点T(3,0),那么=3”是真命题.逆命题是:设直线l交抛物线y2=2x于A、B两点,如果=3,那么该直线过点T(3,0).该命题是假命题.例如:取抛物线上的点A(2,2),B(,1),此时=3,直线AB的方程为Y=(X+1),而T(3,0)不在直线AB上.
17、点评:由抛物线y2=2x上的点A(x1,y1)、B(x12,y2)满足=3,可得y1y2=6。或y1y2=2,如果y1y2=6,可证得直线AB过点(3,0);如果y1y2=2, 可证得直线AB过点(1,0),而不过点(3,0)。例6(1)(2009辽宁卷文、理)(本小题满分12分)已知,椭圆C以过点A(1,),两个焦点为(1,0)(1,0)。(1) 求椭圆C的方程;(2) E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。()解 由题意,c1,可设椭圆方程为。因为A在椭圆上,所以,解得3,(舍去)。所以椭圆方程为 ()证明 设直线方
18、程:得,代入得设(,),(,)因为点(1,)在椭圆上,所以,。又直线AF的斜率与AE的斜率互为相反数,在上式中以代,可得,。所以直线EF的斜率。即直线EF的斜率为定值,其值为。 (2)(2009福建卷文)(本小题满分14分)已知直线经过椭圆的左顶点A和上顶点D,椭圆的右顶点为,点和椭圆上位于轴上方的动点,直线,与直线分别交于两点(I)求椭圆的方程;()求线段MN的长度的最小值;()当线段MN的长度最小时,在椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数,若不存在,说明理由解 方法一(I)由已知得,椭圆的左顶点为上顶点为 故椭圆的方程为()直线AS的斜率显然存在,且,故可设直线的方程
19、为,从而由得0设则得,从而即又由得故又当且仅当,即时等号成立时,线段的长度取最小值()由()可知,当取最小值时, 此时的方程为 要使椭圆上存在点,使得的面积等于,只须到直线的距离等于,所以在平行于且与距离等于的直线上。设直线则由解得或题型4:知识交汇题例7已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为(I) 证明线段是圆的直径;(II)当圆C的圆心到直线X-2Y=0的距离的最小值为时,求p的值解析:(I)证明1: 整理得: 设M(x,y)是以线段AB为直径的圆上的任意一点,则即整理得:故线段是圆的直径证明2: 整理得: .(1)设(x,y)是以线段AB为直径的圆上则即去分母
20、得: 点满足上方程,展开并将(1)代入得:故线段是圆的直径证明3: 整理得: (1)以线段AB为直径的圆的方程为展开并将(1)代入得:故线段是圆的直径(II)解法1:设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设圆心C到直线x-2y=0的距离为d,则当y=p时,d有最小值,由题设得.解法2: 设圆C的圆心为C(x,y),则又因所以圆心的轨迹方程为设直线x-2y+m=0到直线x-2y=0的距离为,则因为x-2y+2=0与无公共点,所以当x-2y-2=0与仅有一个公共点时,该点到直线x-2y=0的距离最小值为将(2)代入(3)得解法3: 设圆C的圆心为C(x,y),则圆心C到直线x-2y
21、=0的距离为d,则又因当时,d有最小值,由题设得.点评:本小题考查了平面向量的基本运算,圆与抛物线的方程.点到直线的距离公式等基础知识,以及综合运用解析几何知识解决问题的能力例8(2009陕西卷文)(本小题满分12分)已知双曲线C的方程为,离心率,顶点到渐近线的距离为。(1)求双曲线C的方程;(2)如图,P是双曲线C上一点,A,B两点在双曲线C的两条渐近线上,且分别位于第一、二象限,若,求面积的取值范围。方法一 解()由题意知,双曲线C的顶点(0,a)到渐近线,所以所以由所以曲线的方程是()由()知双曲线C的两条渐近线方程为设由将P点的坐标代入因为又所以记则由又S(1)=2,当时,面积取到最小
22、值,当当时,面积取到最大值所以面积范围是方法二()由题意知,双曲线C的顶点(0,a)到渐近线,由所以曲线的方程是.()设直线AB的方程为由题意知由由将P点的坐标代入得设Q为直线AB与y轴的交点,则Q点的坐标为(0,m)=.(2009宁夏海南卷文)(本小题满分12分)已知椭圆的中心为直角坐标系的原点,焦点在轴上,它的一个项点到两个焦点的距离分别是7和1(1)求椭圆的方程(2)若为椭圆的动点,为过且垂直于轴的直线上的点,(e为椭圆C的离心率),求点的轨迹方程,并说明轨迹是什么曲线。解(1)设椭圆长半轴长及分别为a,c,由已知得 解得a=4,c=3,所以椭圆C的方程为()设M(x,y),P(x,),
23、其中由已知得而,故 由点P在椭圆C上得 ,代入式并化简得所以点M的轨迹方程为轨迹是两条平行于x轴的线段.67.(2009湖南卷理)(本小题满分13分)在平面直角坐标系xOy中,点P到点F(3,0)的距离的4倍与它到直线x=2的距离的3倍之和记为d,当P点运动时,d恒等于点P的横坐标与18之和()求点P的轨迹C;()设过点F的直线l与轨迹C相交于M,N两点,求线段MN长度的最大值。 解()设点P的坐标为(x,y),则3x-2由题设 当x>2时,由得 化简得 当时 由得化简得 故点P的轨迹C是椭圆在直线x=2的右侧部分与抛物线在直线x=2的左侧部分(包括它与直线x=2的交点)所组成的曲线,参
24、见图1()如图2所示,易知直线x=2与,的交点都是A(2,),B(2,),直线AF,BF的斜率分别为=,=.当点P在上时,由知. 当点P在上时,由知 若直线l的斜率k存在,则直线l的方程为(i)当k,或k,即k-2 时,直线I与轨迹C的两个交点M(,),N(,)都在C 上,此时由知MF= 6 - NF= 6 - 从而MN= MF+ NF= (6 - )+ (6 - )=12 - ( +)由 得 则,是这个方程的两根,所以+=*MN=12 - (+)=12 - 因为当 当且仅当时,等号成立。(2)当时,直线L与轨迹C的两个交点 分别在上,不妨设点在上,点上,则知, 设直线AF与椭圆的另一交点为E 所以。而点A,E都在上,且 有(1)知 若直线的斜率不存在,则=3,此时综上所述,线段MN长度的最大值为.五【思维总结】1注意圆锥曲线的定义在解题中的应用,注意解析几何所研究的问题背景平面几何的一些性质;2复习时要突出“曲线与方程”这一重点内容曲线与方程有两个方面:一是求曲线方程,二是由方程研究曲线的性质.这两方面的问题在历年高考中年年出现,且常为压轴题.因此复习时要掌握求曲线方程的思路和方法,即在建立了平面直角坐标系后,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《机械设计基础》-试卷8
- 《机床电气控制》试卷13
- 吉林艺术学院《透视学》2021-2022学年第一学期期末试卷
- 吉林艺术学院《改革开放史》2021-2022学年第一学期期末试卷
- 2024年公园绿化经营合同范本
- 吉林师范大学《艺术实践与创作》2021-2022学年第一学期期末试卷
- 2022年河北省公务员录用考试《行测》真题及答案解析
- 2024年大客车出租租赁合同范本
- 绞肉机买卖合同协议书范文
- 2022年公务员多省联考《申论》真题(重庆二卷)及答案解析
- 医院感染现患率调查方案
- 2024年广西高考化学试卷真题(含答案解析)
- 供应链安全培训教材课件
- 宣传视频拍摄服务 投标方案(技术方案)
- JTG∕T F30-2014 公路水泥混凝土路面施工技术细则
- 硬笔书法全册教案共20课时
- 发电机组达标投产自查报告
- 2021年贵州高考理综试题含答案
- 《财务管理学》知识点归纳(精华)
- 管道缩写代号.xlsx
- 英格索兰空压机服务协议
评论
0/150
提交评论