七年级数学动点动图难题_第1页
七年级数学动点动图难题_第2页
七年级数学动点动图难题_第3页
七年级数学动点动图难题_第4页
七年级数学动点动图难题_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、动点、动图1、 在ABC中,直线MN经过点C,ADMN于D,BEMN于E。(1)当直线MN绕点C旋转到图时,DE=AD+BE 吗?说明理由。(2)说明直线MN绕点C旋转到图时,DE=AD-BE。(3)当直线MN绕点C旋转到图时,DE、AD、BE具有怎样的等量关系?加以证明。2、如图,已知ABC中,AB=AC=,10CM,BC=8CM,点D为AB的中点。(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动。若点Q的运动速度与点P的运动速度相等时,经过1秒后,BPD与CQP是否全等?,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速

2、度为多少时能够使BPD与CQP全等?(2)若点Q以上的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿ABC三边运动,求经过多长时间点P与点Q第一次在ABC的哪条边上相遇?2、 与角平分线有关的问题例1:如图,在正方形ABCD中,F是CD的中点,AFE=90°,E是BC边上的一点,且AF平分DAE,求证:AE=EC+CD.例2:已知正方形ABCD中,E是BC边上的一点,DAE的平分线交BC的延长线于F,交CD于G;(1)求证AE=BE+DF(2)作EMAF于M,交CD于点H,连接AH,AH平分DAG例3:已知:AOB=90度,OM是AOB的平分线,将三角板的直角顶点

3、P在射线OM上滑动,两直角边分别与OA, 交于C、D,PC和PD有怎样的数量关系,请说明理由。例4、如图,在ABC中,BAC=60度,ACB=40度,P,Q分别在BC、CA上,并且AP、BQ分别是BAC、ABC的角平分线。求证:(1)BQ=CQ(2)BQ+AQ=AB+BP例5、如图所示,在梯形ABCD中,ADBC,B=90°,AD=24 cm,BC=26 cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动(1)经过多长时间,四边形PQCD是平行

4、四边形?(2)经过多长时间,四边形PQBA是矩形?(3)经过多长时间,四边形PQCD是等腰梯形?(4)连接DQ是否存在t值使三角形CDQ为等腰三角形(有三种情况CD=CQ DC=DQ QC=QD)注AB=4根2假设需要X秒,因其中一点到达端点,另一点停止,所以X<26/3,即X<8.671、平行四边形就是PD=QC 24-X=3X,X=62、矩形就是AP=BQ X=26-3X X=6.53、等腰梯形就是PQ=DC,延P、D分别向BC划垂线,得到P'、D', PD=P'D'=24-X,QP'=D'C=26-24=2,QC=QP'

5、+P'D'+D'C 3X=2+2+24-X X=76、如图,在直角三角形ABC中,AB=CB,OBAC,把ABC折叠,使AB落在AC上,点B与AC上的点重合,展开后,折痕AD交BO于点F,连接DE、EF,下列结论:1、AB=2BD,2、图中有4对全等三角形,3、若将DEF沿EF折叠,则点D不一定落在AC上,4、BD=BF,5、正确的有( )个1、 tan ADB=2 错 因为 将ABC折叠,使AB 边落在AC边上,说明AD平分BAC BD/CD=AB/AC 故D不为BC的中点,tanADB=BD/AB不等于2了 2、图中有4对全等三角形 对 ABD与AED AFB与AF

6、E ABO与CBO BFD与EFD3、若将三角形DEF沿EF折叠,则点D不一定落在AC上,点D一定不落在AC上 若落在AC上,说明沿EF折叠后DEF全等OEF EDF =EOF=90° 则 AD平行AC 与(因为 将ABC折叠,使AB 边落在AC边上,说明AD平分BAC )相矛盾4、BD=BF, 对 ADB=90-1/2BAC =67.5度 BOAC AB=CB DBF=45° 故 DFB=180-45-67.5=67.5° =ADB 故BD=BF5、S四边形DFOE=SAOFA 对 S四边形DFOE是梯形 面积等于1/2(OF+DE)OE BDEF为菱形 OFE

7、= OBC=45° FOE=90° 所以 OEF为等腰直角三角形 OE=OFBCA=45° (将ABC折叠,使AB 边落在AC边上,点B与AC边上的点E重合)DEAC 所以 DEC为等腰直角三角形 DE=CES四边形DFOE=1/2(OE+DE)OF= 1/2(OE+CE)OF=1/2OC×OF=1/2OA×OF=SAOF7、如图所示,在直角ABC和ADE中,AB=AC,AD=AE,CE与BD相交于点M,BD交AC于点N,证明: (1)BD=CE;(2)BDCE;(3)当ABC绕A点沿顺时针方向旋转如图、位置时,上述结论是否成立?请选择其中的一

8、个图加以说明。                                                  

9、60;                                        又,如图,ABC和ADE都是等腰直角三角形,CE与BD相交于点M,BD交AC于点N,证明:(1)BD=CE.(2)BDCE.

10、(3)当ABC绕A点沿顺时针方向旋转如下图(1)(2)(3)位置时,上述结论是否成立?请选择其中的一个图加以说明.8、如图1,ABC的边BC在直线L上,ACBC,且AC=BC;EFP的边FP也在直线L上,边EF与边AC重合,且EF=FP.   (1)在图1中,请你通过观察,测量,猜想并写出AB与AP所满足的数量关系和位置关系    (2)将EFP沿直线L向左平移到图2的位置时,EP交AC于点Q,连结AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;   (3)将EFP沿直线L向左平移到图3的位置时,

11、EP的延长线交AC的延长线于点Q,连结AP,BQ,你认为(2)中所猜想的BQ与AP的数量和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由(1)AB=AP;ABAP;(2)BQ=AP;BQAP证明:由已知,得EF=FP,EFFP,EPF=45°又ACBC,CQP=CPQ=45°CQ=CP在RtBCQ和RtACP中,BC=AC,BCQ=ACP=90°,CQ=CP,BCQACP(SAS),BQ=AP如图,延长BQ交AP于点MRtBCQRtACP,1=2在RtBCQ中,1+3=90°,又3=4,2+4=1+3=90°QMA=90°B

12、QAP;(3)成立证明:如图,EPF=45°,CPQ=45°又ACBC,CQP=CPQ=45°CQ=CP在RtBCQ和RtACP中,BC=AC,CQ=CP,BCQ=ACP=90°,RtBCQRtACPBQ=AP如图,延长QB交AP于点N,则PBN=CBQRtBCQRtACP,BQC=APC在RtBCQ中,BQC+CBQ=90°,又CBQ=PBN,APC+PBN=90°PNB=90°QBAP9、如图,ABC是等边三角形,E是AC延长线上的任意一点,选择一点D,使得CDE是等边三角形,P是线段AD的中点,Q是线段BE的中点。(1

13、)求证:AD=BE(2)在CPQ中,求证:CQ=CP,QCP=60度。10、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC。(1)找出图2中的全等三角形,并给予不得含有未标识的字母。(2)证明:CDBE11、A,D,B三点在同一直线上,ADC、BDO为等腰三角形(1)试猜想AO、BC的大小关系与位置关系分别如何?并证明你猜想的结论。(2)若将BDO绕顶点D旋转任意一个角度,如图2,则(1)中猜想的结论成立吗?若成立,请进行证明,若不成立,请说明理由。12、如图,D、E分别是BC,AB边上的点,( )13、已知,ABC是边长3cm的等边三角形,动点P以1cm/s的速度从点A出发,沿线段AB向点B运动。 (1)如图,设时间为t(s),那么t= ( )s时,PBC是直角三角形;(2)如图2,若另一Q从B出发,沿BC向C运动,如果P、Q都以/1cm/s的速度同时出发,设时间为t(s),那么t为何值时,PBQ是 直角三角形?(3)如图,若另一动点Q从点C出发,沿射线BC方向运动,连接PQ交AC于D,如果动点P、Q都/同时以1cm/s的速度同时出发,设时间为t(s),那么t为何值时, DCQ等腰三角形?(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动,连接PQ交AC于D,连接PC,如果P、Q都以1cm /s同时出发

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论