高一抽象函数解法技巧(共6页)_第1页
高一抽象函数解法技巧(共6页)_第2页
高一抽象函数解法技巧(共6页)_第3页
高一抽象函数解法技巧(共6页)_第4页
高一抽象函数解法技巧(共6页)_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上几类抽象函数实例定义:把一类没有给出具体解析式的函数称之为抽象函数。1、已知函数f(x)对任意实数x,y,均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1)2,求f(x)在区间2,1上的值域。2、 已知函数f(x)对任意,满足条件f(x)f(y)2 + f(xy),且当x0时,f(x)2,f(3)5,求不等式的解。 3、设函数f(x)的定义域是(,),满足条件:存在,使得,对任何x和y,成立。求:(1)f(0); (2)对任意值x,判断f(x)值的正负。4、设f(x)是定义在(0,)上的单调增函数,满足,求:(1)f(1);(2)若f(x)f(x8)2,

2、求x的取值范围。5、 设函数yf(x)的反函数是yg(x)。如果f(ab)f(a)f(b),那么 g(ab)g(a)·g(b)是否正确,试说明理由。6、己知函数f(x)的定义域关于原点对称,且满足以下三条件:当是定义域中的数时,有;f(a)1(a0,a是定义域中的一个数);当0x2a时,f(x)0。试问:(1)f(x)的奇偶性如何?说明理由。(2) 在(0,4a)上,f(x)的单调性如何?说明理由。7、 已知函数f(x)对任意实数x、y都有f(xy)f(x)·f(y),且f(1)1, f(27)9,当时,。 (1)判断f(x)的奇偶性; (2)判断f(x)在0,)上的单调性

3、,并给出证明; (3)若,求a的取值范围。解析分析例1:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,当,即,f(x)为增函数。在条件中,令yx,则,再令xy0,则f(0)2 f(0), f(0)0,故f(x)f(x),f(x)为奇函数,f(1)f(1)2,又f(2)2 f(1)4, f(x)的值域为4,2。,又,故。分析例2:由题设条件可猜测:f(x)是yx2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设,当,则, 即,f(x)为单调增函数。 , 又f(3)5,f(1)3。

4、, 即,解得不等式的解为1 < a < 3。分析例3:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)1且f(x)0。解:(1)令y0代入,则,。若f(x)0,则对任意,有,这与题设矛盾,f(x)0,f(0)1。(2)令yx0,则,又由(1)知f(x)0,f(2x)0,即f(x)0,故对任意x,f(x)0恒成立。分析例4:由题设可猜测f(x)是对数函数的抽象函数,f(1)0,f(9)2。解:(1),f(1)0。(2),从而有f(x)f(x8)f(9),即,f(x)是(0,)上的增函数,故 ,解之得:8x9。分析例5: 由题设条件可猜测yf(x)是对数函数的抽象函数,又yf

5、(x)的反函数是yg(x),yg(x)必为指数函数的抽象函数,于是猜想g(ab)g(a)·g(b)正确。解:设f(a)m,f(b)n,由于g(x)是f(x)的反函数,g(m)a,g(n)b,从而,g(m)·g(n)g(mn),以a、b分别代替上式中的m、n即得g(ab)g(a)·g(b)。分析例6: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。解:(1)f(x)的定义域关于原点对称,且是定义域中的数时有,在定义域中。,f(x)是奇函数。(2)设0x1x22a,则0x2x12a,在(0,2a)上f(x)0,f(x1),f(x2),f(x2x1)均小于零,进而知中的,于是f(x1) f(x2),在(0,2a)上f(x)是增函数。又,f(a)1,f(2a)0,设2ax4a,则0x2a2a,于是f(x)0,即在(2a,4a)上f(x)0。设2ax1x24a,则0x2x12a,从而知f(x1),f(x2)均大于零。f(x2x1)0,即f(x1)f(x2),即f(x)在(2a,4a)上也是增函数。综上所述,f(x)在(0,4a)上是增函数。分析例7:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在0,)上是增函数。解:(1)令y1,则f(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论