初二数学三角形与全等三角形、轴对称知识点归纳_第1页
初二数学三角形与全等三角形、轴对称知识点归纳_第2页
初二数学三角形与全等三角形、轴对称知识点归纳_第3页
初二数学三角形与全等三角形、轴对称知识点归纳_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初二数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形2 )在实际运用中,已经两边,则第三边的取值范围为:两边之差第三边两边之和3 )所有通过周长相

2、加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做ABC的边BC上的高9、三角形的中线:连接ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个周长大,也有可能是第一个周长小10、三角形的角平分线:画/A的平分线AD,交/A所对的边BC于D,所得线段AD叫做ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度。证明方法:利用平行线性质

3、2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等初二全等三角形知识点复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。(2):全等三角形的周长相等、面积相等。(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

4、边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:方法指与I证明两个三角形全等的基本思路:我第三边(SSS)找夹角C辿A我是否有直角CHL)找这边的另一个邻角0£田r已知一边和它的邻角找这个角的另一个边自妁0):已知一边一角L我这边的对角(AA5)已知一边和它的对生找一角(AAS)已知角是直角,找一边(HL)找两角

5、的夹边依三八)(3):已知两角-T,j找夹边外的任意边(也AS)二、角的平分线:熟悉基本图形1、(性质)角的平分线上的点到角的两边的距离相等2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”初二数学轴对称知识点一、轴对称图形1 .把一个图形沿着一条直线折叠,如

6、果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。2 .把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点3、轴对称图形和轴对称的区别与联系对称3、轴对称图形和铀对称的区别与联系轴对称图形区别的位通关图形及对称图形是相有特殊形状的只对(一个)国瑾而言(2)对褥轴市一建只育一条(一个图形,(两个)图形二只有(一余对称轴一联系如果把轴对称图形沿对称轴分成两部分,瑾么这两个四稔就关于这条交线成躺对称如果把两个成轴对称的图形拼

7、在一起看成一"b整侬邦幺官就是一个轴对称图麻4.轴对称的性质关于某直线对称的两个图形是全等形。如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。二、线段的垂直平分线熟悉基本图形比较区分角平分线模型1 .经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。2 .线段垂直平分线上的点与这条线段的两个端点的距离相等3 .与一条线段两个端点距离相等的点,在线段的垂直平分线上4 .三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等四、(等腰三角形)知识点回顾1 .等腰三角形的性质 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)五、(等边三角形)知识点回顾1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论