污水处理厂的运行与管理复习资料全_第1页
污水处理厂的运行与管理复习资料全_第2页
污水处理厂的运行与管理复习资料全_第3页
污水处理厂的运行与管理复习资料全_第4页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、常见故障原因分析及对策(1)格栅流速太高或太低这是由于进入各个渠道的流量分配不均匀引起的,流量大的渠道,对应的过栅流速必然高,反之, 流量小的渠道,过栅流速则较低。 应经常检查并调节栅前的流量调节阀门或闸阀,保证过栅流速的均匀分配。(2)格栅前后水位差增大当栅渣截留量增加时,水位差增加, 因此,格栅前后的水位差能反映截留栅渣量的多少,定时开停的除污方式比较稳定。手动开停方式虽然工作量比较大,但只要工作人员精心操作,能保证及时清污,有些城市污水厂采用超声波测定水位差的方法控制格栅自动除渣。但是,无论采用何种清污方式, 工作人员都应该到现场巡察, 观察格栅运行和栅渣积累情况, 及时合理地清渣,保证

2、格栅正常高效运行。工艺控制实例分析某污水处理厂冬季最冷月份污水平均温度为12 ,入流平均量100000m3/d ,经运行实践发现该温度下要使SS 去除率大于55%,水力表面负荷必须1.3m3/m2 ·h。在夏季时污水平均温度 25,入流量为150000m3/d ,此时只要水力表面负荷1.73m3/m2 · h , SS 就能保证 55%的去除率。该厂共有10 座初沉池,其单池尺寸为B× H ×L=14m × 2.5 m× 30 m,每池出水溢流堰总长60m。试为该厂编制运行调度方案。冬季时 nQ100000/ 24qB L1 .314

3、7.6 830TBLHn14302.58242h(1.5 2.0)Q100000Q14.9mm / s50mm / s;BHnqQ8.710l n实例分析某污水处理厂日处理污水量100000m3/d ,入流 SS 为 250mg/l 。该厂设有四条初沉池,每池配有一台流量为60m3/h 的排泥泵,每4h 排泥一次。试计算当SS 去除率为 60%,且要求排泥浓度为3%时,每次排泥持续时间。解:每一次排泥周期产生的干泥量M s( SS iSS e ) Q25060 %10000042410 62 .5g排泥含固量为3%,污泥浓度 C=3000g/m3即每池产生湿泥量Q sM S2 .51063)C

4、 s3 10321 ( m4故每池排泥时间T=( 21/60)×60=21(min)沉淀池的异常问题及解决对策 出水带有大量悬浮颗粒原因 水力负荷冲击或长期超负荷, 因短流而减少了停留时间, 以至絮体在沉降前即流出出水堰。解决办法均匀分配水力负荷;调整进水、出水设施不均匀,减轻冲击负荷影响,有利于克服短流; 投加絮凝剂, 改善某些难沉淀悬浮物的沉降性能,如胶体或乳化油颗粒的絮凝;调整进入初沉池的剩余污泥的负荷。 出水堰脏且出水不均原因污泥粘附、藻类长在堰上,或浮渣等物体卡在堰口上,导致出水堰脏,甚至某些堰口堵塞导致出水不均。解决办法经常清除出水堰口卡住的污物;适当加药消毒阻止污泥、藻

5、类在堰口的生长积累。 污泥上浮原因污泥停留时间过长,有机质腐败。解决办法保证正常的贮泥和排泥时间;检查排泥设备故障;清除沉淀池壁, 部件或某些死角的污泥。 浮渣溢流原因浮渣去除装置位置不当或去除频次过低,浮渣停留时间长。解决办法维修浮渣刮除装置;调整浮渣刮除频率;严格控制浮渣的产生量。 污泥管道或设备堵塞原因初沉池污泥中易沉淀物含量高,而管道或设备口径太小,又不经常工作造成的。解决办法设置清通措施;增加污泥设备操作频率;改进污泥管道或设备。 刮泥机故障原因刮泥机因承受过高负荷等原因停止运行。解决办法 缩短贮泥时间, 降低存泥量; 检查刮板是否被砖石、 工具或松动的零件卡住;及时更换损坏的连环、

6、刮泥板等部件;防止沉淀池表面积冰;调慢刮泥机的转速。参数水力停留时间HRT 是指污水在处理构筑物的平均停留时间。HRT= 处理构筑物的有效容积/ 进水量(h)固体停留时间 SRT 即污泥龄是新增长的污泥在曝气池中平均停留时间或池中污泥增长一倍平均所需的天数。SRT=生化系统的污泥总量/剩余污泥的排放量( d)SRT >HRT污泥负荷Ns 是生化系统单位重量的污泥在单位时间承受的有机物数量,即有:NS =( S0-S) Q/VX ( kg/kg.d )其中,S0曝气池进水BOD5 浓度( mg/L ); S出水 BOD5 浓度( mg/L ); Q进水流量( m3/d); V 曝气池有效容

7、积(m3);X 混合液污泥浓度(mg/L ); Ns污泥负荷( kg BOD5 / kg MLSS或 MLVSS)容积负荷Nv 是生化系统单位重量有效曝气体积在单位时间承受的有机物数量,一般记做F/V ,用Nv表示。污泥负荷Ns 和容积负荷Nv 过低,虽然可降低水中有机物含量,但也时活性污泥处于过氧化状态,使污泥沉淀性能差,出水SS 变大 ,水质变差。污泥负荷 Ns 和容积负荷 Nv 过高,又使有机物氧化不彻底,出水水质变差。有机负荷率又称为食物 -微生物比 F/M ,是单位重量的活性污泥在单位时间去除污染物的数量,为单位时间供给处理系统的BOD5 与曝气池混合液MLSS 或 MLVSS 的比

8、值,即:F/M=BOD5/MLSS或 MLVSS= S0Q/VX其中, S0曝气池进水 BOD5 浓度( mg/L );Q进水流量( m3/d);V 曝气池有效容积( m3); X 混合液污泥浓度( mg/L ); F/M 有机负荷率( kg BOD5 / kg MLSS或 MLVSS )某污水厂曝气池有效容积 5000m3,曝气池活性污泥浓度为 MLVSS 为 3000mg/l ,试计算入流污水量为 22500m3/d ,入流污水 BOD5 为 200mg/l 时,该厂的 F/M 值。解: Q=22500m3/d,BOD5=200mg/l,V=5000m3,MLVSS=3000mg/l,将这

9、些数据带入式(3)得F/M= 22500x200/3000x5000=0.30kgBOD5/(kgMLVSS? d)冲击负荷指在短时间污水处理设施的进水超出设计值或超出正常值,可以是水力冲击负荷,也可以是有机冲击负荷。冲击负荷过大, 超过生物处理系统的承受能力就会影响处理效果,出水水质变差, 严重时使系统运行崩溃。温度: 生化处理系统要求在一定的温度围,才能正常运行, 温度过高或者过低都会影响系统的运行,降低处理效率。一般好氧工艺温度应在1030之间。溶解氧 DO 是污水处理系统控制的最关键指标。DO 过高,容易使污泥过氧化,DO 过低,使有机物分解不彻底。一般好养段DO 一定要大于2.0mg

10、/L ,缺氧段要求控制在0.5mg/L 以下,厌氧段要求在0.2mg/L以下污泥发白 原因: 1.缺少营养,丝状菌或固着型纤毛虫大量繁殖,菌胶团生长不良;2.PH 值高或过低,引起丝状菌大量生长,污泥松散,体积偏大;解决办法: 1.按营养配比调整进水负荷,氨氮滴加量,保持数日污泥颜色可以恢复。2.调整进水pH值,保持曝气池pH值在6 8 之间,长期保持PH值围才能有效防止污泥膨胀。二沉池常规检测项目:pH 值、SS 和 DO(正常情况下,出水SS 应当在 30mg/L 以下,最大不应当超过50mg/L 。若二沉池出水中的DO 明显下降。说明二沉池污泥仍具有较高的需氧量,水质处理不完全)、BOD

11、 等指标(二沉池出水的BOD 等指标都应达到国家有关排放准,若是超标,应当采取相应措施。)回流系统的控制方式保持回流量Qr 恒定;保持回流比R 恒定;定期或随时调节回流量Qr 及回流比 R,使系统状态处于最佳。Qr及 R 的确定或控制调节方法按照二沉池的泥位调节回流比RA. 应根据具体情况选择一个合适的泥位Ls 和合适的泥层厚度Hs。如右图所示。B.调节回流污泥量,使泥位 Ls 稳定在所选定的合理值。一般情况下, 回流量 Qr ,泥位,减少泥层厚度;反之,回流量Qr,泥层厚度。C.应注意调节幅度每次不要太大,如调回流比,每次不超过5%,如调回流量,则每次不要超过原来值的 l0。具体每次调多少,

12、 多长时间以后再调节下一次, 应根据本厂实际情况决定。实例分析某厂二沉池泥层厚度Hs 一般控制在0.6 一 0.9m 之间为宜。 运行人员发现当回流比控制在 40时,泥位在升高,且泥层厚度 Hs 已超过 1.0 m,试分析用回流比调节的方法控制泥位上升的方案。解:先将回流比 R 调至 45,观察泥位是否下降 ;如果 5h 之后,泥位仍在上升,则将R 调至 50,继续观察泥位的变化情况,直至泥位稳定在合适的深度下。如果回流比调至最大,泥位仍在上升,则可能是由于排泥量不足所致,应增大排泥。如果泥位太低,应试着减少回流比。因回流比太大,不但浪费能量,还有可能降低rss值。一般情况下,入流污水量一天之

13、总在变化,泥位也在波动,为稳妥起见,应在每天的流量高峰,即泥位最高时,测量泥位,并以此作为调节回流比的依据。 按照沉降比调节回流比或回流量其原理是 : RSV30100 - SV30实例计算某处理厂曝气池混合液的沉降比为 25,回流比为 50,试分析该厂回流比控制是否合理,及如仍调节。SV302533%解 : R100 - SV 3010025因此,该厂回流比偏高,二沉池泥位偏低。应将R 由 50逐步调节至 33。为使 SV 充分接近二沉池的实际状态,SV 尽量采用 SV30,即搅拌状态下的沉降比提高回流比控制的准确性。 按照回流污泥及混合液的浓度调节回流比即用RSS 和 MLSS 的关系来指

14、导 R 的调节。其原理是 : RMLSSRSS- MLSS该法只适用于低负荷工艺,即入流SS 不高的情况下,否则会造成误差。实例分析某处理厂测得曝气池混合液污泥浓度MLSS 为 2000mg/l ,回流污泥浓度RSS 为5000mg/l 。运行人员刚把回流比R 调至 50,试分析回流比调节是否正确,应如何调节。MLSS2000解 : R500067%RSS- MLSS2000因此,将回流比调至 50是不正确的,应调至 67,否则如不增大排泥,污泥将随出水流失。依据污泥沉降曲线调节回流比沉降性能不同的污泥具有不同的沉降曲线,如右图所示。 回流比的大小, 直接决定污泥在二沉池的沉降浓缩时间。对于某

15、种特定污泥,如果调节R 使污泥在二沉池HRT 恰好等于该种污泥通过沉降达到最大浓度所需的时间,则此时RSS 最高且 R 最小。沉降曲线的拐点处对应的沉降比, 即为该污泥的最小沉降比, 用 SVm 表示。根据由 SVm 确定的回流比 R 运行,可使污泥在池停留时间较短,同时污泥浓度较高。回流比 R 与 SVm 的关系如下:R SVm 100 - SVm 四种回流比调节方法的比较根据泥位调节回流比,不易造成由于泥位升高而使污泥流失,出水SS 较稳定,但回流污泥浓度不稳定(即没考虑污泥达到SVm 时所需的时间) 。按照 SV30 调节回流比, 操作非常方便, 但当污泥沉降性能不佳时,不易得到高浓度的

16、RSS,使回流比反比实际需要值偏大。按照 RSS 和 MLSS 调节回流比,由于要分析RSS 和 MLS5 ,比较麻烦,一般可做为回流比的一种校核方法。用沉降曲线调节回流比,简单易行,可获得高RSS,同时使污泥在二沉池停留时间最短,该法尤其适于硝化工艺及除磷工艺.剩余污泥的排放(1) SV30 控制排泥量SV30 在一定程度上,既反映污泥的沉降浓缩性能,又反映污泥浓度的大小。当浓缩性能较好时, SV30 较小,反之较高。当污泥浓度较高时, SV30 较大,反之则较小。当测得污泥 SV30 较高时,可能是污泥浓度增大,也可能是沉降性能恶化,不管是那种原因,都应及时排泥,降低 SV30 值。采用该

17、法排泥时,缓慢进行,一次排泥不能太多,如通过排泥要将SV30 由 50降至30时,可利用一周的时间逐渐实现,每天少排一部分泥,使SV30 下降,逐渐逼近30。(2) 用 MLSS 控制排泥量用 MLSS 控制排泥系指在维持曝气池MLSS 恒定的情况下,确定排泥量。首先根据实际工艺状况确定一个合适的MLSS 值,使系统能保证处理效果,并能实现泥水分离。一般的推流式曝气池中的 MILSS 在 1.5 一 3.0g/l 之间,完全混合式曝气池的 MILSS 在 3 一 6g/l 之间;冬季可高些,夏季低些。排泥量可用下式计算:VW(MLSS现 MLSS期 )V ( MLSS MLSS0 )V排泥浓度

18、RSS式子中, MLSS 为实测值; MLSS0 为要维持的浓度值例:某处理厂根据经验一般将MLSS 控制在 2000mg/l ,曝气池容积为 5000m3 。某日实测MLSS 为 2500mg/l , RSS 为 4000mg/l ,试计算此时应排放的污泥量。解 : VW (MLSS MLSS0)V (2500 2000) 5000 625m3RSS4000上例仅是说明计算过程,实际上不可能连续一次排放625m3 污泥。一般来说,活性污泥工艺是一个渐进过程,在控制总的排泥量前提下每次尽量少排勤排,如有可能,应连续排泥。这种排泥方法比较直观,易于理解, 实际上很多处理厂都用这种方法,但该法仅适

19、于进水水质水量变化不大的情况。有时,这种方法容易导致误操作。例如,当入流BOD5增加 50%时, MLSS 必然上升,此时若仍通过排泥保持恒定的MLSS 值,则实际上使污泥负荷增加了一倍,会使出水质量严重下降。( 3)用 F M 控制排泥量FQCiMVX a这种方法要使污泥浓度的变化倍数与QCi 的变化倍数保持一致,即可使F/M 基本保持恒定。排泥量可下式计算:MLVSS V a BOD iQ/(F/M)VWRSS式中:VW 排放的剩余污泥体积;Va曝气池容积; BOD i 入流污水的 BOD5 ;F M 要控制的有机负荷;RSS回流污泥浓度。实例计算某处理厂将有机负荷 F M 一般控制在 0

20、.3kgBOD (kg MLVSS ·d)。某日测得入流污水量 Q 20 000m3 d,BOD5 150mg/l ,MLVSS 2500g/l ,RSS 4000mg/l ,该厂曝气池有效容积 Va 5000m3 。试计算剩余污泥排放量。V WMLVSS V aBOD i Q /( F / M )RSSV W2500 5000150 20000 / 0. 3625 m 34000当入流污水水质波动较大时,该法也可使用。因此,工业废水含量较大的处理厂,应尽量采用这种排泥方法。使用这种方法的关键是确定合适的FM 值。 F M 值可根据污水的温度做适当调整,当水温高时,F M 值可高些,

21、反之可低些。当入流工业废水中难降解物质较多时,FM 应低一些,反之可高些。实际运行控制中,一般是控制在一段时间的平均F M 值基本恒定, 在这一段时间,可根据情况做些小的调整。例如,每周六或每周五的污染负荷一般会增加,可在周四或周五适当少排泥,使F M 适当降低,保存一些污泥,防止周六F M 值升的太高。这样平均下来,可使一周7d 的均 F M 基本与上周一致。计算 F M 时,要用到入流的BOD5 ,而 BOD5 需要 5d 才能调出,实际上难以采用。因此应根据情况,发展一些快速测定法,例如,用COD , TOC 等指标快速估算BOD5 ,或采用27时 1d 的生化需氧量 BOD1 。总之,

22、采用该法排泥时,应能快速测得入流污水的有机负荷。另外,计算 F M 时,必须用 MLVSS 值。MLVSS 值测定较麻烦, 可以利用 MLSS 和 MLVSS 之间的相关关系进行估算。f 一般取 0.7 0.8( 4)用 SRT 控制排泥用 SRT 控制排泥,被认为是一种最可靠最准确的排泥方法,该方法的关键是正确选择 SRT 和准确地计算系统的污泥总量。应根据处理要求、环境因素和运行实践综合比较分折。选择合适的泥龄SRT 作为控制排泥的目标。应充分利用污泥的沉降试验、呼吸试验、生物相观测等手段,随时调整SRT,使之更加合理。一般来说,处理效率要求越高,出水水质要求越严格,SRT 应控制大一些,

23、反之,可小一些。在满足要求的处理效果前提下,温度较高时,SRT 可小些,反之则应大一些。当污泥的沉降性能较差时, 有可能是由于泥龄太小。SRT 越大,利用呼吸试验测得的耗氧速率越小,反之则越大。通过生物相观察,会发现不同的SRT 对应着不同的优势指示生物。严格地讲,系统中的污泥总量应包括曝气池的污泥量和回流系统的污泥量,但在实际运行管理中,很多处理厂在用SRT 控制排泥时,仅考虑曝气池的污泥量。故在不考虑出水带走的污泥的情况下,每天排放的干污泥量q:根据泥龄的定义V a X aV a X a:qqXqX q实际上由于出水所带走的排泥所占的比例不容忽视,尤其是在出水SS 超标时,更不能忽视。故在考虑出水所带的泥的情况下,排泥量q:qV a X aSS e Q ; SS e 为出水中的污泥浓度。X qXq

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论