版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学必修一专题讲解 高中数学必修一专题讲解(集锦)专题一:抽象函数常见题型解法总章抽象函数的考察范围及类型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的特殊模型:特殊
2、模型抽象函数正比例函数f(x)=kx (k0)f(x+y)=f(x)+f(y)幂函数 f(x)=xnf(xy)=f(x)f(y) 或指数函数 f(x)=ax (a>0且a1)f(x+y)=f(x)f(y) 对数函数 f(x)=logax (a>0且a1)f(xy)=f(x)+f(y) 正、余弦函数 f(x)=sinx f(x)=cosxf(x+T)=f(x)正切函数 f(x)=tanx余切函数 f(x)=cotx一.定义域问题 -多为简单函数与复合函数的定义域互求。例1.若函数y = f(x)的定义域是2,2,则函数y = f(x+1)+f(x1)的定义域为 。 解:f(x)的定义
3、域是,意思是凡被f作用的对象都在 中。评析:已知f(x)的定义域是A,求的定义域问题,相当于解内函数的不等式问题。练习:已知函数f(x)的定义域是 ,求函数 的定义域。例2:已知函数的定义域为3,11,求函数f(x)的定义域 。评析: 已知函数的定义域是A,求函数f(x)的定义域。相当于求内函数的值域。练习:定义在上的函数f(x)的值域为,若它的反函数为f-1(x),则y=f-1(2-3x)的定义域为 ,值域为 。二、求值问题-抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验;例3.对任意实数x,y,均满足f(x+y2)=f(x)+
4、2f(y)2且f(1)0,则f(2001)=_.解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手: 令x=0,y=1,得f(0+12)=f(0)+2f(1)2, 令x=y=0,得:f(0)=0,f(1)=,R上的奇函数y=f(x)有反函数y=f-1(x),由y=f(x+1)与y=f-1(x+2)互为反函数,则f(2009)= .解析:由于求的是f(2009),可由y=f-1(x+2)求其反函数y=f(x)-2,所以f(x+1)= f(x)-2,又f(0)=0,通过递推可得f(2009)=-4918.例4.已知f(x)是定义在R上的函数,f(1)=1,且对任意xR都有f(x+5)f(
5、x)+5,f(x+1)f(x)+1.若g(x)=f(x)+1-x,则g(2002)=_.1解:由g(x)=f(x)+1-x,得f(x)=g(x)+x-1. 而f(x+5)f(x)+5,所以g(x+5)+(x+5)-1g(x)+x-1+5 , 又f(x+1)f(x)+1,所以 g(x+1)+(x+1)-1g(x)+x-1+1即 g(x+5)g(x), g(x+1)g(x). 所以g(x)g(x+5)g(x+4)g(x+3)g(x+2)g(x+1),故g(x)=g(x+1) 又g(1)=1, 故g(2002)=1.练习: 1. f(x)的定义域为,对任意正实数x,y都有f(xy)=f(x)+f(y
6、) 且f(4)=2 ,则 ( )2. 。2000 .( ,原式=16)3、对任意整数函数满足:,若,则 CA.-1 B.1 C. 19 D. 434、函数f(x)为R上的偶函数,对都有成立,若,则=( )(B) A . 2005 B. 2 C.1 D.05、定义在R上的函数Y=f(x)有反函数Y=f-1(x),又Y=f(x)过点(2,1),Y=f(2x)的反函数为Y=f-1(2x),则Y=f-1(16)为( )(A)A) B) C)8 D)16 三、值域问题例4.设函数f(x)定义于实数集上,对于任意实数x、y,f(x+y)=f(x)f(y)总成立,且存在,使得,求函数f(x)的值域。解:令x
7、=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数,使得成立矛盾,故 f(0)0,必有 f(0)=1。由于f(x+y)=f(x)f(y)对任意实数x、y均成立,因此, ,又因为若f(x)=0,则f(0)=f(x-x)=f(x)f(-x)=0与f(0)0矛盾,所以f(x)>0.四、解析式问题(换元法,解方程组,待定系数法,递推法,区间转移法,例5. 已知f(1+sinx)=2+sinx+cos2x, 求f(x)解:令u=1+sinx,则sinx=u-1 (0u2),则f(u)=-u2+3u+1 (0u2)故f(x)
8、=-x2+3x+1 (0u2)小结:换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法.例6、设对满足x0,x1的所有实数x,函数f(x)满足, ,求f(x)的解析式。解:- (2)-(3)小结:通过解方程组的方法可求表达式。怎样实现由两个变量向一个变量的转化是解题关键。通常,给某些变量适当赋值,使之在关系中“消失”,进而保留一个变量,是实现这种转化的重要策略。例7.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x2-4x,求f(x).解:易知f(x)是二次多项式,设f(x)=ax2+bx+c (a0),代入比较系数得:a=1,b= -2,c= -1,f(x)=x2-
9、2x-1.小结:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。例8.是否存在这样的函数f(x),使下列三个条件:f(n)>0,nN; f(n1+n2)=f(n1)f(n2),n1,n2N*;f(2)=4同时成立?若存在,求出函数f(x)的解析式;若不存在,说明理由.解:假设存在这样的函数f(x),满足条件,得f(2)=f(1+1)=4,解得f(1)=2.又f(2)=4=22,f(3)=23,由此猜想:f(x)=2x (xN*) (数学归纳证明 略) 小结:对于定义在正整数集N*上的抽象函数,用数列中的递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解.例
10、9、已知是定义在R上的偶函数,且恒成立,当时,则当时,函数的解析式为( D ) A B C D 解:易知T=2,当时,; 当时,.故选D。小结:利用函数的周期性和对称性把未知区间转移到已知区间,利用已知区间的表达式求未知区间的表达式,是求解析式中常用的方法。练习:1、解:,2.(2006重庆)已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.()若f(2)=3,求f(1);又若f(0)=a,求f(a);()设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式。3、函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f
11、(1)=0, (1)求的值; (2)对任意的,都有f(x1)+2<logax2成立时,求a的取值范围解:(1)由已知等式,令,得,又,(2)由,令得,由(1)知,在上单调递增,要使任意,都有成立,必有都成立.当时,,显然不成立当时,解得的取值范围是方法提炼 怎样赋值?需要明确目标,细心研究,反复试验;(2)小题中实质是不等式恒成立问题.五、单调性问题 (抽象函数的单调性多用定义法解决) 例10.设函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y),若x>0时f(x)<0,且f(1)= -2,求f(x)在-3,3上的最大值和最小值.解析:由单调性的定义步骤设x1
12、<x2, 则f(x2)=f(x2-x1+x1)=f(x2-x1)+f(x1)< f(x1). (x2-x1>0,f(x2-x1)<0)所以f(x)是R上的减函数, 故f(x)在-3,3上的最大值为f(3)=f(1)+f(2)=3f(1)=-6,最小值为f(-3),令x=y=0,得f(0)=0,令y=-x,得f(-x)+f(x)=f(0)=0,即f(x)为奇函数.f(-3)=-f(3)=6.练习:设f(x)定义于实数集上,当x>0时,f(x)>1,且对于任意实数x、y,有f(x+y)=f(x)f(y), 求证:f(x)在R上为增函数。证明:设R上x1<x
13、2,则f(x2-x1)>1,f(x2)=f(x2-x1+x1)=f(x2-x1)f(x1),(注意此处不能直接得大于f(x1),因为f(x1)的正负还没确定) 。取x=y=0得f(0)=0或f(0)=1;若f(0)=0,令x>0,y=0,则f(x)=0与x>0时,f(x)>1矛盾,所以f(0)=1,x>0时,f(x)>1>0,x<0时,-x>0,f(-x)>1,由,故f(x)>0,从而f(x2)>f(x1).即f(x)在R上是增函数。(注意与例4的解答相比较,体会解答的灵活性) 例11、已知偶函数f(x)的定义域是x0的一
14、切实数,对定义域内的任意x1,x2都有,且当时,(1)f(x)在(0,+)上是增函数; (2)解不等式解: (1)设,则,即,在上是增函数(2),是偶函数不等式可化为,又函数在上是增函数,0,解得:练习:已知函数f(x)的定义域为R,且对m、nR,恒有f(m+n)=f(m)+f(n)1,且f()=0,当x>时,f(x)>0.求证:f(x)是单调递增函数;证明:设x1x2,则x2x1>,由题意f(x2x1)>0,f(x2)f(x1)=f(x2x1)+x1f(x1)=f(x2x1)+f(x1)1f(x1)=f(x2x1)1=f(x2x1)+f()1=f(x2x1)>0
15、,f(x)是单调递增函数.例12、定义在R+上的函数f(x)满足: 对任意实数m,f(xm)=mf(x); f(2)=1.(1)求证:f(xy)=f(x)+f(y)对任意正数x,y都成立; (2)证明f(x)是R+上的单调增函数;(3)若f(x)+f(x-3)2,求x 的取值范围.解:(1)令x=2m,y=2n,其中m,n为实数,则f(xy)=f(2m+n)=(m+n)f(2)=m+n.又f(x)+f(y)=f(2m)+f(2n)=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y)故f(x1)<f(x2),即f(x)是R+上的增函数.(3)由f(x)+f(x-3)2及f(
16、x)的性质,得fx(x-3)2f(2)=f(2),解得 3<x4.练习2、 定义在R上的函数y=f(x),f(0)0,当x0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)·f(b).(1)求证:f(0)=1; (2)求证:对任意的xR,恒有f(x)0;(3)求证:f(x)是R上的增函数;(4)若f(x)·f(2xx2)1,求x的取值范围.(1)证明:令a=b=0,则f(0)=f 2(0).又f(0)0,f(0)=1.(2)证明:当x0时,x0,f(0)=f(x)·f(x)=1.f(x)=0.又x0时f(x)10,xR时,恒有f(x)0.(3)证
17、明:设x1x2,则x2x10.f(x2)=f(x2x1+x1)=f(x2x1)·f(x1).x2x10,f(x2x1)1.又f(x1)0,f(x2x1)·f(x1)f(x1).f(x2)f(x1).f(x)是R上的增函数.(4)解:由f(x)·f(2xx2)1,f(0)=1得f(3xx2)f(0).又f(x)是R上的增函数,3xx20.0x3.关键点注:解本题的关键是灵活应用题目条件,尤其是(3)中“f(x2)=f(x2x1)+x1”是证明单调性的关键,这里体现了向条件化归的策略练习3.设f(x)是定义在R上的奇函数,且对任意a,b,当a+b0,都有 0(1).若
18、ab,试比较f(a)与f(b)的大小;(2).若f(k 0对x 1,1恒成立,求实数k的取值范围。 (由 >0可得f(a)>f(b).)练习4、已知函数f(x)对任何正数x,y都有f(xy)=f(x)f(y),且f(x)0,当x>1时,f(x)<1.试判断f(x)在(0,+)上的单调性,并说明理由.解:,所以f(x1)>f(x2),故f(x)在R+上为减函数.练习6、. 已知函数的定义域为,且同时满足:(1)对任意,总有; (2)(3)若且,则有.(I)求的值; (II)求的最大值;(III)设数列的前项和为,且满足.求证:.解:(I)令,由(3),则由对任意,总
19、有 (2分)(II)任意且,则 (6分)(III) (8分),即。 故即原式成立。 (14分)六、奇偶性问题例13. (1)已知函数f(x)(x0的实数)对任意不等于零的实数x、y都有f(xy)=f(x)+f(y),试判断函数f(x)的奇偶性。解析:函数具备奇偶性的前提是定义域关于原点对称,再考虑f(-x)与f(x)的关系:取y=-1有f(-x)=f(x)+f(-1),取x=y=-1有f(1)=2f(-1),取x=y=1有f(1)=0.所以f(-x)=f(x),即f(x)为偶函数。(2)已知y=f(2x+1)是偶函数,则函数y=f(2x)的图象的对称轴是( D )A.x=1B.x=2C.x=D
20、.x=解析:f(2x+1)关于x=0对称,则f(x)关于x=1对称,故f(2x)关于2x=1对称.注:若由奇偶性的定义看复合函数,一般用一个简单函数来表示复合函数,化繁为简。F(x)=f(2x+1)为偶函数,则f(-2x+1)=f(2x+1)f(x)关于x=1对称。 例14:已知函数f(x)的定义域关于原点对称且满足,(2)存在正常数a,使f(a)=1.求证:f(x)是奇函数。 证明:设t=x-y,则,所以f(x)为奇函数。例15:设是定义在上的偶函数,且在上是增函数,又。求实数的取值范围。解析:又偶函数的性质知道:在上减,而,所以由得,解得。(设计理由:此类题源于变量与单调区间的分类讨论问题
21、,所以本题弹性较大,可以作一些条件变换如:等;也可将定义域作一些调整)例16:定义在R上的单调函数f(x)满足f(3)=log3且对任意x,yR都有f(x+y)=f(x)+f(y) (1)求证f(x)为奇函数;(2)若f(k·3)+f(3-9-2)0对任意xR恒成立,求实数k的取值范围(1)证明:f(x+y)=f(x)+f(y)(x,yR)- 令y=-x,代入式,得 f(x-x)=f(x)+f(-x)=f(0),令x=y=0,代入式,得f(0+0)=f(0)+f(0),即 f(0)=0即f(-x)=-f(x)对任意xR成立,f(x)是奇函数(2)解:f(3)=log30,即f(3)f
22、(0),又f(x)在R上是单调函数,所以f(x)在R上是增函数,又由(1)f(x)是奇函数f(k·3)-f(3-9-2)=f(-3+9+2), k·3-3+9+2,3-(1+k)·3+20对任意xR成立令t=30,即t-(1+k)t+20对任意t0恒成立故:对任意xR恒成立。说明:问题(2)的上述解法是根据函数的性质f(x)是奇函数且在xR上是增函数,把问题转化成二次函数f(t)=t-(1+k)t+2对于任意t0恒成立对二次函数f(t)进行研究求解本题还有更简捷的解法:分离系数由k·3-3+9+2得要使对不等式恒成立,只需k<上述解法是将k分离出来
23、,然后用平均值定理求解,简捷、新颖练习:1、已知f(x)是定义在R上的不恒为零的函数,且对于任意的函数a,b都满足f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值; (2)判断f(x)的奇偶性,并证明你的结论;(3)若f(2)=2,un=f(2n) (nN*),求证:un+1>un (nN*).解:(1)、令a=b=0,得f(0)=0,令a=b=1,得f(1)=0. (2)、令a=b=-1,得f(-1)(-1)=-f(-1)-f(-1),f(-1)=0,故f(-x)=f(-1)(x)= -f(x)+xf(-1)= -f(x),故f(x)为奇函数.(3)先用数学归纳法证
24、明:un=f(2n)>0 (nN*)(略)2.定义域为R的函数f(x)满足:对于任意的实数x,y都有f(x+y)=f(x)+f(y)成立,且当x0时f(x)0恒成立.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)证明f(x)为减函数;若函数f(x)在-3,3)上总有f(x)6成立,试确定f(1)应满足的条件;解:(1) 同例16(略)(2)设任意x1,x2R且x1x2,则x2-x10,f(x2-x1)0,而f(x2-x1)= f(x2)+ f(-x1)= f(x2)-f(x1)<0;f(x1)f(x2),即f(x)在(-,+)上是减函数.f(x)在-3,3上的最大值为f(-
25、3).要使f(x)6恒成立,当且仅当 f(-3)6,又f(-3)= - f(3)= - f(2+1)=- f(2)+ f(1)= - f(1)+ f(1)+ f(1)= -3 f(1),f(1)-2.(3) f(ax2)- f(x) f(a2x)- f(a)f(ax2)- f(a2x)nf(x)- f(a)f(ax2-a2x)nf(x-a),由已知得:fn(x-a)=nf(x-a)f(ax2-a2x)fn(x-a)f(x)在(-,+)上是减函数ax2-a2xn(x-a).即(x-a)(ax-n)0,a0,(x-a)(x-)0,讨论:(1)当a0,即a-时,原不等式解集为x | x或xa;(2)
26、当a=0即a=-时,原不等式的解集为;(3)当a0时,即-a0时,原不等式的解集为x | xa或x3、已知f(x)是定义在1,1上的奇函数,且f(1)=1,若a,b1,1,a+b0时,有0.(1)判断函数f(x)在1,1上是增函数,还是减函数,并证明你的结论;(2)解不等式:f(x+)f();(3)若f(x)m22pm+1对所有x1,1,p1,1(p是常数)恒成立,求实数m的取值范围.解:(1)设任意x1,x21,1,且x1<x2.由于f(x)是定义在1,1上的奇函数,f(x2)f(x1)=f(x2)+f(x1).因为x1<x2,所以x2+(x1)0,由已知有0,x2+(x1)=x
27、2x1>0f(x2)+f(x1)>0,即f(x2)>f(x1),所以函数f(x)在1,1上是增函数.(2)由不等式f(x+)f()得,解得1<x<0,即为所求.(3)由以上知f(x)最大值为f(1)=1,所以要f(x)m22pm+1对所有x1,1,p1,1(p是常数)恒成立,只需1m22pm+1恒成立,得实数m的取值范围为m0或m2p.七、周期性与对称性问题(由恒等式简单判断:同号看周期,异号看对称)编号周 期 性对 称 性1T=2对称轴Û是偶函数;对称中心(a,0)Û是奇函数2T=对称轴;对称中心;3f(x)= -f(x+a)T=2f(x)=
28、 -f(-x+a)对称中心4T=2对称中心5f(x)=±T=2f(x)= b-f(-x+a)对称中心6f(x)=1-T=3结论:(1) 函数图象关于两条直线x=a,x=b对称,则函数y=f(x)是周期函数,且T=2|a-b| (2) 函数图象关于点M(a,0)和点N(b,0)对称,则函数y=f(x)是周期函数,且T=2|a-b| (3) 函数图象关于直线x=a,及点M(b,0)对称,则函数y=f(x)是周期函数,且T=4|a-b| (4) 应注意区分一个函数的对称性和两个函数的
29、对称性的区别: y=f(a+x)与y=f(b-x)关于对称;y=f(a+x)与y=-f(b-x)关于点对称 (可以简单的认为:一个函数的恒等式,对应法则下的两式相加和的一半为对称轴:两个同法则不同表达式的函数,对应法则下的两式相减等于0,解得的x为对称轴)例17:已知定义在R上的奇函数f (x)满足f (x+2) = f (x),则f (6)的值为( B )A. 1 B. 0 C. 1 D. 2解: 因为f (x)是定义在R上的奇函数,所以f (0) = 0,又T=4,所以f (6) = f (2) = f (0) = 0。函数f(x)对于任意的实数x都有f(1+2x)=f(1-2x),则f(
30、2x)的图像关于 对称。(x=1/2)练习:(2010重庆)已知函数满足:,则=_.解析:取x=1 y=0得 法一:通过计算,寻得周期为6法二:取x=n y=1,有f(n)=f(n+1)+f(n-1),同理f(n+1)=f(n+2)+f(n) 联立得f(n+2)= f(n-1) 所以T=6 故=f(0)= 例18. 已知函数y=f(x)满足,求的值。解:由已知式知函数的图象关于点(0,1001)对称。据原函数与其反函数的关系,知函数y=f-1(x) 的图象关于点(1001,0)对称,所以,即=0 例19. 奇函数f (x)定义在R上,且对常数T > 0,恒有f (x + T ) = f
31、(x),则在区间0,2T上,方程f (x) = 0根的个数最小值为( )CA. 3个 B.4个 C.5个 D.6个解:f (0) = 0x1= 0, 又f (2T ) = f (T ) = f (0) = 0 x2 = T,x3 = 2T.又因为 令x = 0得,=0.(本题易错选为A)例20 f(x)满足f(x) =-f(6-x),f(x)= f(2-x),若f(a) =-f(2000),a5,9且f(x)在5,9上单调。求a的值。解: f(x)=-f(6-x) f(x)关于(3,0)对称 又 f(x)= f(2-x) f(x)关于x=1对称 T=8 f(2000)= f(0) 又f(a)
32、=-f(2000) f(a)=-f(0) 又f(x) =-f(6-x) f(0)=-f(6) f(a)=f(6) a =6设y=f(x)是定义在-1,1上的偶函数,函数y=f(x)的图象与y=g(x)的图象关于直线x=1对称,且当x 2,3时,g(x)=2a(x-2)-4(x-2)3(a为常数且a R) (1)求f(x); (2)是否存在a 2,6或a (6,+),使函数f(x)的图象的最高点位于直线y=12上?若存在,求出a的值;若不存在,说明理由.解:(1)设点M(x,f(x)为函数y=f(x)图象上任意一点,则点M关于直线x=1的对称点为N(2-x,f(x).y=f(x)的图象与y=g(
33、x)的图象关于直线x=1对称.点N(2-x,f(x)在y=g(x)图象上.由此得f(x)=g(2-x)(利用结论4的命题易得这一结果:y=g(x)与y=g(2-x)的图象关于直线x=1对称)设x -1,0,则2-x 2,3.此时f(x)=g(2-x)=-2ax+4x3又f(x)为偶函数f(-x)=f(x),x -1,1.当x 0,1时,f(x)=2ax-4 x3 (2)注意到f(x)为偶函数,只须研究f(x)在0,1上的最大值.()当a (2,6时,由0 x 1得a-2x20,f(x)=2x(a-2 x2)= =(当且仅当4 =a2 ,即x= 0,1时等号成立).由题意知,f(x)的最大值为1
34、2,令 =12得 =486> ,a>6,这与a (2,6矛盾,故此时满足条件的a不存在.()当a=2且0x1时,f(x)=4x(1 )同理可证 f(x)= (当且仅当2 =1- ,即x= 时等号成立),也与已知矛盾.()当a>6时,设0 ,则f( )-f( )=2a(- )-4(- )=2( - )a-2(+ + ),由题设0< + + <3,a>6a-2( + + )>0又 - <0f( )-f( )<0即f( )<f( ),f(x)在0,1上为增函数.此时 =f(1)=2a-4.令2a-4=12,解得a=8 (6,+),适合题意.
35、因此,综合() () ()知,存在a=8 (6,+),使得函数f(x)的图象的最高点位于直线y=12上.练习1、函数是偶函数,则的图象关于 x=1 对称。2、函数满足,且,则 -1 。3、函数f(x)是定义在R上的奇函数,且,则 解析:法一:因f(x)为奇函数且关于对称,T=2,可借助图象解答,得结果为0. 小结:此方法为数形结合法法二:因f(x)为奇函数且关于对称,类比联想函数 0, 小结:此方法为抽象函数具体化法4、已知函数是定义在R上的奇函数,函数是的反函数,若则( D )A)2 B)0 C)1 D)-2解析:法一:(函数具体化)设符合题意,则则,法二:y=f(2x-1)是R上的奇函数f
36、(-2x-1)=-f(2x-1),即f(-2x-1)+f(2x-1)=0,由反函数的关系就可以取x1= f(-2x-1),x2= f(2x-1),所以g(x1)+g(x2)=-2x-1+(2x-1)=-2.5.设f(x)是R的奇函数,f(x+2)= f(x),当0x1,时,f(x)=x,则f(7.5)= - 0.5 6.定义在R上的函数f(x)满足f(-x)+f(x)=3,则f-1(x)+f-1(3-x)= .07、 f(x)是定义在R上的以3为周期的奇函数,且f(2)=0,则方程f(x)=0在区间(0,6)内解的个数的最小值是( )DA.4 B.5 C.6 D.78、设函数f(x)的定义域为
37、1,3,且函数f(x)的图象关于点(2,0)成中心对称,已知当x 2,3时f(x)= 2x,求当x 1,2时,f(x)的解析式.解:由已知得f(x)=-f(4-x)又当x 1,2时,4-x 2,3,f(4-x)=(4-x) -2(4-x) 由得f(x)=- (x- 4) +2(4-x)当x 1,2时,f(x)=-x +6x-89、(09山东)已知定义在R上的奇函数,满足,且在区间0,2上是增函数,若方程f(x)=m(m>0)在区间上有四个不同的根,则-8八、综合问题例21. 定义在R上的函数f(x)满足:对任意实数m,n,总有,且当x>0时,0<f(x)<1。(1)判断
38、f(x)的单调性; (2)设,若 ,试确定a的取值范围。解:(1)在中,令,得,因为,所以。在中,令,因为当时,所以当时,而,所以又当x=0时,所以,综上可知,对于任意,均有。设,则所以.所以在R上为减函数。(2)由于函数y=f(x)在R上为减函数,所以,即有又,根据函数的单调性,有,由,所以直线与圆面无公共点。因此有,解得。评析:(1)要讨论函数的单调性必然涉及到两个问题:一是f(0)的取值问题,二是f(x)>0的结论。这是解题的关键性步骤,完成这些要在抽象函数式中进行。由特殊到一般的解题思想,联想类比思维都有助于问题的思考和解决。例22.设定义在R上的函数f(x),满足当x>0
39、时,f(x)>1,且对任意x,yR,有f(x+y)=f(x)f(y),f(1)=2解:(1)先证f(x)>0,且单调递增,因为f(x)=f(x+0)=f(x)f(0),x>0时f(x)>1,所以f(0)=1.f(x)=f(x-xo)+xo=f(x-xo)f(xo)=0,与已知矛盾,故f(x)>0,任取x1,x2R且x1<x2,则x2-x1>0,f(x2-x1)>1,所以f(x1)-f(x2)=f(x2-x1)+x1-f(x1)=f(x2-x1)f(x1)-f(x1)=f(x1)f(x2-x1)-1>0. 所以xR时,f(x)为增函数. 解得
40、:x|1<x<2(2)f(1)=2,f(2)=2,f(3)=8,原方程可化为:f(x)2+4f(x)-5=0,解得f(x)=1或f(x)=-5(舍)由(1)得x=0.例23.(2)当x(-1,0)时,有f(x)>0.求证:()f(x)是奇函数; ()解:(1)易证f(x)是奇函数。(2)易证f(x)在(-1,0),(0,1)上是单调递减函数. 抽象函数问题的“原型”解法抽象函数问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究发现,由抽象函数结构、性质,联想已学过的基本函数,再由基本函数的相关结论,预测、猜想抽象函数可能有的相关结论,是使抽象函数问题获解的一种有
41、效方法。所谓抽象函数,是指没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。由抽象函数构成的数学问题叫抽象函数问题,这类问题是学生学习中的一个难点,也是各种考试测评的热点问题之一。研究抽象函数问题的解法,对教师的教学,学生深刻理解并牢固掌握函数的相关内容,学好大纲规定的基本函数知识显得尤为重要。抽象来源于具体。抽象函数是由特殊的、具体的函数抽象而得到的。如有可抽象为。那么=就叫做抽象函数满足的“原型”(函数),分析抽象函数问题的解题过程及心理变化规律可知,一般均是由抽象函数的结构,联想到已学过的具有相同或相似结构的某类(基本)“原型”函数,并由“原型”函数的相关结论
42、,预测、猜想抽象函数可能具有的某种性质使问题获解的,称这种解抽象函数问题的方法为“原型”解法。下面给出中学阶段常用的“原型”(函数)并举例说明“原型”解法。一、中学阶段常用抽象函数的“原型”(函数)1、(为常数)2、=(0且1)3、 (0且1)4、(为常数)5、或=(为常数) 6、=二、“原型”解法例析【例1】 设函数满足,且()=0,、R;求证:为周期函数,并指出它的一个周期。分析与简证:由想:=2coscos原型:=,为周期函数且2为它的一个周期。猜测:为周期函数,2为它的一个周期令=+,= 则=0为周期函数且2是它的一个周期。【例2】 已知函数满足,若,试求(2005)。分析与略解:由想
43、:(+)=原型:=为周期函数且周期为4×=。猜测:为周期函数且周期为4×1=4=-(+4)=是以4为周期的周期函数又f(2)=2004=-f(2005)=- 【例3】 已知函数对于任意实数、都有,且当0时,0,(-1)=-2,求函数在区间-2,1上的值域。分析与略解:由:想:(+)=+原型:(为常数)为奇函数。0时为减函数,0时为增函数。猜测:为奇函数且为R上的单调增函数,且在2,1上有4,2设<且,R 则>0 ()>0=0,为R上的单调增函数。令=0,则(0)=0,令=,则()=为R上的奇函数。(-1)=- (1)=-2 (1)=2,(-2)=
44、2(-1)=-4-42(x-2,1)故在-2,1上的值域为-4,2【例4】 已知函数对于一切实数、满足(0)0,且当<0时,1(1)当0时,求的取值范围(2)判断在R上的单调性分析与略解:由:想:原型:=(0, 1),=10。当1时为单调增函数,且0时,1,0时,01;01时为单调减函数,且0时,1,0时,01。猜测: 为减函数,且当0时,01。(1)对于一切、R,且(0)0令=0,则(0)=1,现设0,则-0,f(-) 1又(0)=(-)= =1 = 101(2)设<,、R,则<0,()1且1, f(x)在R上为单调减函数【例5】 已知函数定义域为(0,+)且单调递增,满足
45、(4)=1,【例6】(1)证明:(1)=0;(2)求(16);(3)若+ (-3)1,求的范围;(4)试证()=(nN)分析与略解:由:想:(、R+)原型:(0,0)猜测:有(1)=0,(16)=2,(1)令=1,=4,则(4)=(1×4)=(1)+(4)(1)=0(2)(16)=(4×4)=(4)+(4)=2(3)+(3)=(3)1=(4)在(0,+)上单调递增 (3,4(4)【例7】 已知函数对于一切正实数、都有且1时,1,(2)=(1)求证:0;(2)求证:(3)求证:在(0,+)上为单调减函数(4)若=9,试求的值。分析与简证:由,想:原型:(为常数(=)猜测:0,
46、在(0,+)上为单调减函数,(1)对任意0,=)=0假设存在0,使=0,则对任意0=f(=0,这与已知矛盾故对任意0,均有0(2),0, (1)=1()=(·)=(1)=1 (3)、(0,+),且,则1,()1, 即在(0,+)上为单调减函数。(4)(2)=,()=9 (2)()=1(2)=1=f(1),而在(0,+)是单调减函数2=1 即=综上所述,由抽象函数问题的结构特征,联想已学过的具有相同或相似结构的基本(原型)函数,并由基本函数的相关结构,预测、猜想抽象函数可能具有的性质 “抽象具体抽象”的“原型”联想思维方式,可使抽象函数问题顺利获解,且进一步说明,学生学好大纲规定的几种
47、基本函数相关知识的重要性。专题二:赋值法赋值法是指给定的关于某些变量的一般关系式,赋予恰当的数值或代数式后,通过运算推理,最后得出结论的一种解题方法. 下面介绍它在函数问题中的应用. 一、判断函数的奇偶性例1 若(x + y) =(x) +(y) 对于任意实数x、y 都成立,且(x) 不恒等于零,判断函数(x) 的奇偶性解:在(x + y) =(x) +(y) 中令 x = y = 0 ,得(0) = 0又在(x + y) =(x) +(y) 中令 y =x ,这样就有:(xx) =(x) +(x) ,即(0) =(x) +(x) ,又(0) = 0,所以(x) =(x) ,由于(x) 不恒等
48、于零,所以(x) 是奇函数二、讨论函数的单调性例2 设(x) 定义于实数集上,当x0时,(x)1 ,且对于任意实数x、y ,有(x + y) =(x) ·(y),求证(x) 在R 上为增函数证明:由 (x + y) =(x)(y) 中取x = y = 0 ,得(0) =,若(0) = 0,令x0 ,y = 0 ,则 (x) = 0,与(x)1 矛盾 (0) 0,即有(0) = 1 当x0 时 ,(x)10 ,当x0 时 ,x0,(x)10 ,而(x) ·(x) =(0) = 1, (x) =0 又当x = 0 时 ,(0) = 10 ,xR ,(x)0 设 xx+ ,则xx
49、0 ,( xx)1 ( x) = x+ ( xx) =(x)( xx)( x) y =(x) 在R 上为增函数三、求函数的值域例3 已知函数f(x)在定义域x(0, )上是增函数,且满足f(xy)=f(x)f(y)(x、yR),求f(x)的值域.解:因为x=y=1时,f(1)=2f(1),所以f(1)=0又因为f(x)在定义域R上是增函数,所以x1>x2>0时,令x1=mx2(m>1),则f(x1)f(x2)=f(m·x2)f(x2)=f(m)f(x2)f(x2)=f(m)>0.所以对于x>1有f(x)>0.又设x1=mx2>0(0<m
50、<1),则0<x1<x2.因为函数(x)在R上是增函数,所以f(x1)f(x2)<0, 即f(mx2)f(x2) = f(m) f(x2)f(x2)=f(m)<0. 所以对于0<x<1有f(x)<0. 综上所述:当xR时,f(x)的值域为R.四、求函数的解析式例4 设对满足| x |1的所有实数x,函数f(x)满足+=x,求f(x)的解析式.解:将x取为, 代入原等式,有+ f(x)=, (1)将x取为 , 代入原等式,有f(x)+=.(2)(1)(2),且将原等式代入即得(|x|1)专题三:复合函数的定义域和解析式1、复合函数的定义设是到的函数
51、,是到上的函数,且,当取遍中的元素时,取遍,那么就是到上的函数。此函数称为由外函数和内函数复合而成的复合函数。 说明:复合函数的定义域,就是复合函数中的取值范围。称为直接变量,称为中间变量,的取值范围即为的值域。与表示不同的复合函数。例1设函数,求若的定义域为,则复合函数中,注意:的值域例2(课时练 2 例1)若函数的定义域是0,1,求的定义域;若的定义域是-1,1,求函数的定义域;已知定义域是,求定义域点评:解决复合函数问题,一般先将复合函数分解,即它是哪个内函数和哪个外函数复合而成的 解答: 函数是由A到B上的函数与B到C上的函数复合而成的函数函数的定义域是0,1,B=0,1,即函数的值域
52、为0,1,即,函数的定义域0, 函数是由A到B上的函数与B到C上的函数复合而成的函数的定义域是-1,1,A=-1,1,即-1,,即的值域是-3,1,的定义域是-3,1点评:若已知的定义域为,则的定义域就是不等式的的集合;若已知的定义域为,则的定义域就是函数 的值域。 函数是由A到B上的函数与B到C上的函数复合而成的函数的定义域是-4,5),A=-4,5)即,即的值域B=-1,8)又是由到上的函数与B到C上的函数复合而成的函数,而,从而的值域的定义域是1,)例3已知函数定义域是(a,b),求的定义域解:由题, 当,即时,不表示函数;当,即时,表示函数,其定义域为说明: 已知的定义域为(a,b),求的定义域的方法:已知的定义域为,求的定义域。实际上是已知中间变量的的取值范围,即,。通过解不等式求得的范围,即为的定义域。 已知的定义域为(a,b),求的定义域的方法:若已知的定义域为,求的定义域。实际上是已知直接变量的取值范围,即。先利用求得的范围,则的范围即是的定义域。2求有关复合函数的解析式例4已知 求;已知 ,求例5已知 ,求; 已知,求点评:已知求复合函数的解析式,直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业定制移动APP开发合同(2024年版)
- 仓储农药化肥仓储服务合同
- 儿童游乐园特许合同
- 全日制劳动合同的文件归档约定
- GB/T 44856-2024养老保险待遇领取资格认证服务规范
- 《网络营销》大学题集
- 无人船生产企业账务处理-记账实操
- wipo-2023年马德里年鉴摘要
- 实时系统中的并发控制
- 2023年医用磁共振成像设备资金申请报告
- 《江西数学三年级上学期数学期中试卷》
- 《万维网安全新协议》课件 2024-2025学年人教版新教材初中信息技术七年级全一册
- 部编版历史高一上学期期中试卷与参考答案(2024-2025学年)
- 数据备份与恢复应急预案
- 印刷包装岗位招聘笔试题与参考答案(某大型国企)
- 变电站新建工程三通一平场地平整施工方案
- 陪护公司运营方案
- 预防高处坠落安全监理细则
- 人教版化学九上学案:6.2 二氧化碳制取的研究
- 政务大厅装修改造工程施工设计方案
- 2024年物业管理师(中级)考前必刷必练题库500题(含真题、必会题)
评论
0/150
提交评论