版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、xy0观察下图,思考并讨论以下问题:观察下图,思考并讨论以下问题:(1) 这两个函数图象有什么共同特征吗?(2) 相应的两个函数值对应表是如何体现这些特征的?f(-3)=9=f(3) f(-2)=4=f(2) f(-1)=1=f(1)f(-3)=3=f(3) f(-2)=2=f(2) f(-1)=1=f(1)f(x)=x2f(x)=|x| 实际上,对于实际上,对于R内任意的一个内任意的一个x,都有都有f(-x)=(-x)2=x2=f(x),这时我们称函数这时我们称函数y=x2为为偶函数偶函数.1偶函数偶函数 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都
2、有都有f(x)=f(x),那么,那么f(x)就叫做就叫做偶函数偶函数 例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.12)(, 1)(22xxfxxf 观察函数观察函数f(x)=x和和f(x)=1/x的图象的图象(下图下图),你能发,你能发现现两个函数图象有什么共同特征吗?两个函数图象有什么共同特征吗?f(-3)=-3=-f(3) f(-2)=-2=-f(2) f(-1)=-1=-f(1) 实际上,对于实际上,对于R内任意的一个内任意的一个x,都有都有f(-x)=-x=-f(x),这时这时我们称函数我们称函数y=x为为奇函数奇函数.f(-3)=-1/3=-f(3) f(-2)
3、=-1/2=-f(2) f(-1)=-1=-f(1)2奇函数奇函数 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都有都有f(x)= f(x),那么,那么f(x)就叫做就叫做奇奇函数函数 注意:注意: 1 1、函数是奇函数或是偶函数称为函数的奇偶性,、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的函数的奇偶性是函数的整体性质整体性质;2 2、由函数的奇偶性定义可知,函数具有奇偶性的、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个一个必要条件是,对于定义域内的任意一个x,则,则x也一定是定义域内的一个自变量(即也
4、一定是定义域内的一个自变量(即定义域关定义域关于原点对称于原点对称)3 3、奇、偶函数定义的逆命题也成立,即、奇、偶函数定义的逆命题也成立,即 若若f(x)f(x)为奇函数,则为奇函数,则f(-x)=-f(x)有成立有成立. . 若若f(x)f(x)为偶函数,则为偶函数,则f(- -x)=f(x)有成立有成立. .4、如果一个函数、如果一个函数f(x)是奇函数或偶函数,那么我是奇函数或偶函数,那么我们就说函数们就说函数f(x)具有具有奇偶性奇偶性.例5、判断下列函数的奇偶性:2541)()4(1)()3()()2()()1(xxfxxxfxxfxxf (1)解:定义域为R f(-x)=(-x)
5、4=f(x)即f(-x)=f(x)f(x)偶函数(2)解:定义域为R f(-x)=(-x)5=- x5 =-f(x)即f(-x)=-f(x)f(x)奇函数(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)f(x)奇函数(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x)即f(-x)=f(x)f(x)偶函数3.用定义判断函数奇偶性的步骤:(1)、先求定义域,看是否关于原点对称;、先求定义域,看是否关于原点对称;(2)、再判断、再判断f(-x)=-f(x)或或f(-x)=f(x)是否恒成立是否恒成立.课堂练习 3 , 1,)() 6(1)()
6、 5 (0)() 4(5)() 3 (1)() 2(1)() 1 (22xxxfxxfxfxfxxfxxxf 判断下列函数的奇偶性:判断下列函数的奇偶性:3.奇偶函数图象的性质1、奇函数的图象关于原点对称奇函数的图象关于原点对称. 反过来,如果一个函数的图象关于原反过来,如果一个函数的图象关于原点对称,那么就称这个函数为奇函数点对称,那么就称这个函数为奇函数.2、偶函数的图象关于偶函数的图象关于y轴对称轴对称. 反过来,如果一个函数的图象关于反过来,如果一个函数的图象关于y轴对称,轴对称,那么就称这个函数为偶函数那么就称这个函数为偶函数.说明说明:奇偶函数图象的性质可用于:奇偶函数图象的性质可用于: a、简化函数图象的画法、简化函数图象的画法. B、判断函数的奇偶性、判断函数的奇偶性例例3、已知函数、已知函数y=f(x)是偶函数,它在是偶函数,它在y轴右边的图轴右边的图象如下图,画出在象如下图,画出在y轴左边的图象轴左边的图象.xy0解:画法略相等相等xy0相等相等本课小结1、两个定义:对于f(x)定义域内的任意一个x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告合同协议书:杂志广告合同范本
- 吉林省落叶松木材购销合同
- 亲子活动安全承诺书
- 业主提案提交指南
- 意外事故赔偿协议书标准范本
- 护坡施工合同书格式
- 土地租赁合同补充协议的签订注意事项
- 住宅建筑工程合同样本
- 2024三人股权合作协议书
- 简单版房屋租赁合同撰写心得
- 防范工贸行业典型事故三十条措施解读
- 8安全记心上-交通安全(教学设计)部编版道德与法治三年级上册
- 提炼与抽象-顺畅沟通世界 课件-2023-2024学年高中美术人教版(2019)选择性必修4 设计
- 国开2024年秋季《形势与政策》专题测验1-5答案
- 2024年高考英语时事热点:航天主题(附答案解析)
- 2024-2030年工业自动化行业市场发展分析及发展前景与投资机会研究报告
- 苏科版(2024)七年级上册数学第1章 数学与我们同行 1.3交流 表达 教案
- 中国慢性冠脉综合征患者诊断及管理指南2024版解读
- 仁爱版八年级上册《英语》期中考试卷及答案【可打印】
- CJJT55-2011 供热术语标准
- 大龄工人免责协议书
评论
0/150
提交评论