版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2016中考数学专题讲座 几何与函数问题【知识纵横】 客观世界中事物总是相互关联、相互制约的。几何与函数问题就是从量和形的侧面去描述客观世界的运动变化、相互联系和相互制约性。函数与几何的综合题,对考查学生的双基和探索能力有一定的代表性,通过几何图形的两个变量之间的关系建立函数关系式,进一步研究几何的性质,沟通函数与几何的有机联系,可以培养学生的数形结合的思想方法。【典型例题】【例1】已知,(如图)是射线上的动点(点与点不重合),是线段的中点(1)设,的面积为,求关于的函数解析式,并写出函数的定义域;(2)如果以线段为直径的圆与以线段为直径的圆外切,求线段的长;BADMECBADC备用图(3)联
2、结,交线段于点,如果以为顶点的三角形与相似,求线段的长【思路点拨】(1)取中点,联结;(2)先求出 DE; (3)分二种情况讨论。【例2】(山东青岛)已知:如图(1),在中,点由出发沿方向向点匀速运动,速度为1cm/s;点由出发沿方向向点匀速运动,速度为2cm/s;连接若设运动的时间为(),解答下列问题:(1)当为何值时,?(2)设的面积为(),求与之间的函数关系式;(3)是否存在某一时刻,使线段恰好把的周长和面积同时平分?若存在,求出此时的值;若不存在,说明理由;AQCPBAQCPB(4)如图(2),连接,并把沿翻折,得到四边形,那么是否存在某一时刻,使四边形为菱形?若存在,求出此时菱形的边
3、长;若不存在,说明理由 图(1) 图(2)【思路点拨】(1)设BP为t,则AQ = 2t,证APQ ABC;(2)过点P作PHAC于H(3)构建方程模型,求t;(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么构建方程模型后,能找到对应t的值。【例3】(山东德州)如图(1),在ABC中,A90°,AB4,AC3,M是AB上的动点(不与A,B重合),过M点作MNBC交AC于点N以MN为直径作O,并在O内作内接矩形AMPN令AMx (1)用含x的代数式表示NP的面积S; (2)当x为何值时,O与直线BC相切? (3)在动点M的运动过程中,记NP与梯形BCNM重合的面积
4、为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?ABCMNPOABCMNDOABCMNPO 图(1) 图(2) 图(3)【思路点拨】(1)证AMN ABC;(2)设直线BC与O相切于点D,连结AO,OD,先求出OD(用x的代数式表示),再过M点作MQBC 于Q,证BMQBCA;(3)先找到图形娈化的分界点,2。然后 分两种情况讨论求的最大值: 当02时, 当24时。【学力训练】1、(山东威海) 如图,在梯形ABCD中,ABCD,AB7,CD1,ADBC5点M,N分别在边AD,BC上运动,并保持MNAB,MEAB,NFAB,垂足分别为E,FCDABEFNM(1)求梯形A
5、BCD的面积; (2)求四边形MEFN面积的最大值 (3)试判断四边形MEFN能否为正方形,若能,求出正方形MEFN的面积;若不能,请说明理由 ABCDERPHQ2、(浙江温州市)如图,在中,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动设,(1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围);(3)是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由3、(湖南郴州)如图,平行四边形ABCD中,AB5,BC10,BC边上的高AM=4,E为 BC边上的一个动点(不与B、C重合)过E作直线AB的垂线,垂
6、足为F FE与DC的延长线相交于点G,连结DE,DF(1) 求证:BEF CEG(2) 当点E在线段BC上运动时,BEF和CEG的周长之间有什么关系?并说明你的理由(3)设BEx,DEF的面积为 y,请你求出y和x之间的函数关系式,并求出当x为何值时,y有最大值,最大值是多少? 4、(浙江台州)如图,在矩形中,点是边上的动点(点不与点,点重合),过点作直线,交边于点,再把沿着动直线对折,点的对应点是点,设的长度为,与矩形重叠部分的面积为(1)求的度数;(2)当取何值时,点落在矩形的边上?(3)求与之间的函数关系式;当取何值时,重叠部分的面积等于矩形面积的?DQCBPRABADC(备用图1)BA
7、DC(备用图2)几何与函数问题的参考答案【典型例题】【例1】(上海市)(1)取中点,联结,为的中点,又,得;(2)由已知得以线段为直径的圆与以线段为直径的圆外切,即解得,即线段的长为;(3)由已知,以为顶点的三角形与相似,又易证得由此可知,另一对对应角相等有两种情况:;当时,易得得;当时,又,即,得解得,(舍去)即线段的长为2综上所述,所求线段的长为8或2图BAQPCH【例2】(山东青岛)(1)在RtABC中,由题意知:AP = 5t,AQ = 2t,若PQBC,则APQ ABC, (2)过点P作PHAC于HAPH ABC, (3)若PQ把ABC周长平分,则AP+AQ=BP+BC+CQ, 解得
8、:若PQ把ABC面积平分,则, 即3t=3 t=1代入上面方程不成立, 不存在这一时刻t,使线段PQ把RtACB的周长和面积同时平分P BAQPC图MN(4)过点P作PMAC于,PNBC于N,若四边形PQP C是菱形,那么PQPCPMAC于M,QM=CMPNBC于N,易知PBNABC, , ,解得:当时,四边形PQP C 是菱形 此时,在RtPMC中,菱形PQP C边长为【例3】(山东德州)(1)MNBC,AMN=B,ANMC AMN ABC ,即 ANx =(04) (2)如图(2),设直线BC与O相切于点D,连结AO,OD,则AO =OD =MNABCMND图( 2)OQ在RtABC中,B
9、C =5 由(1)知 AMN ABC ,即 ,ABCMNP图 (1)O 过M点作MQBC 于Q,则 在RtBMQ与RtBCA中,B是公共角, BMQBCA , x 当x时,O与直线BC相切 (3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点ABCMNP图 (3)O MNBC, AMN=B,AOMAPC AMO ABP AMMB2 故以下分两种情况讨论: 当02时, ABCMNP图 ( 4)OEF 当2时, 当24时,设PM,PN分别交BC于E,F 四边形AMPN是矩形, PNAM,PNAMx 又 MNBC, 四边形MBFN是平行四边形 FNBM4x 又PEF ACB 当2
10、4时, 当时,满足24, 综上所述,当时,值最大,最大值是2【例3】(山东德州)(1)MNBC,AMN=B,ANMC AMN ABC ,即 ANx =(04) ABCMND图( 2)OQ(2)如图(2),设直线BC与O相切于点D,连结AO,OD,则AO =OD =MN在RtABC中,BC =5 由(1)知 AMN ABC ,即 , 过M点作MQBC 于Q,则 在RtBMQ与RtBCA中,B是公共角, BMQBCA ABCMNP图 (1)O , x 当x时,O与直线BC相切(3)随点M的运动,当P点落在直线BC上时,连结AP,则O点为AP的中点ABCMNP图 (3)O MNBC, AMN=B,A
11、OMAPC AMO ABP AMMB2 故以下分两种情况讨论: 当02时, 当2时, ABCMNP图 ( 4)OEF 当24时,设PM,PN分别交BC于E,F 四边形AMPN是矩形, PNAM,PNAMx 又 MNBC, 四边形MBFN是平行四边形 FNBM4x 又PEF ACB 当24时, 当时,满足24, 综上所述,当时,值最大,最大值是2 【学力训练】1、(山东威海)(1)分别过D,C两点作DGAB于点G,CHAB于点H ABCD, DGCH,DGCH 四边形DGHC为矩形,GHCD1 CDABEFNMGH DGCH,ADBC,AGDBHC90°, AGDBHC(HL) AGB
12、H3 在RtAGD中,AG3,AD5, DG4 CDABEFNMGH(2) MNAB,MEAB,NFAB, MENF,MENF 四边形MEFN为矩形 ABCD,ADBC, AB MENF,MEANFB90°, MEANFB(AAS) AEBF 设AEx,则EF72x AA,MEADGA90°, MEADGA ME 当x时,ME4,四边形MEFN面积的最大值为(3)能 由(2)可知,设AEx,则EF72x,ME 若四边形MEFN为正方形,则MEEF 即 72x解,得 EF4 四边形MEFN能为正方形,其面积为2、(浙江温州市)(1),点为中点,(2),即关于的函数关系式为:(
13、3)存在,分三种情况:ABCDERPHQM21当时,过点作于,则,ABCDERPHQ,ABCDERPHQ当时,当时,则为中垂线上的点,于是点为的中点,综上所述,当为或6或时,为等腰三角形3、(湖南郴州)(1) 因为四边形ABCD是平行四边形, 所以 所以所以(2)的周长之和为定值理由一:过点C作FG的平行线交直线AB于H ,因为GFAB,所以四边形FHCG为矩形所以 FHCG,FGCH因此,的周长之和等于BCCHBH 由 BC10,AB5,AM4,可得CH8,BH6,所以BCCHBH24理由二:由AB5,AM4,可知 在RtBEF与RtGCE中,有:,所以,BEF的周长是, ECG的周长是又BECE10,因此的周长之和是24(3)设BEx,则所以配方得: 所以,当时,y有最大值最大值为4、(浙江台州)(1)如图,四边形是矩形,又,(2)如图(1),由轴对称的性质可知,DQCBPRA(图1),由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025中国能源建设集团投资限公司校园招聘18人高频重点提升(共500题)附带答案详解
- 2025中国石化华北石油工程限公司毕业生招聘35人高频重点提升(共500题)附带答案详解
- 2025中国电信研究院校园招聘高频重点提升(共500题)附带答案详解
- 2025中国电信吉林通化分公司校园招聘高频重点提升(共500题)附带答案详解
- 2025中国国新招聘高频重点提升(共500题)附带答案详解
- 2025中共赣州市委机构编制委员会办公室招募青年见习1人(江西)高频重点提升(共500题)附带答案详解
- 2025下半年陕西西安职业技术学院招聘工作人员15人高频重点提升(共500题)附带答案详解
- 2025下半年贵州安顺市西秀区事业单位招聘不可人员历年高频重点提升(共500题)附带答案详解
- 2025下半年浙江嘉兴市南湖区事业单位招聘37人高频重点提升(共500题)附带答案详解
- 2025下半年江苏南京林业大学教学科研岗招聘165人高频重点提升(共500题)附带答案详解
- HSE基础知识培训
- 管道巡护管理
- 2024年度托管班二人合伙协议书3篇
- 2024-2024年高考全国卷英语语法填空
- 第17课《猫》课件+【知识精研】统编版语文七年级上册
- 专题01:新闻作品-2023-2024学年八年级语文上册单元主题阅读(统编版)(原卷版+解析)
- 湖北省武汉市东湖高新区2023-2024学年七年级上学期期末语文试题(解析版)
- 《风险评估培训》课件
- DB13-T 5931-2024 珍珠棉生产企业安全生产技术条件
- 2025届上海曹杨二中高二物理第一学期期末综合测试模拟试题含解析
- 会议会务服务投标方案投标文件(技术方案)
评论
0/150
提交评论