




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、确定磁场最小面积的方法电磁场内容历来是高考中的重点和难点。近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法。一、几何法例1. 一质量为m、电荷量为+q的粒子以速度,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30°,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图1所示,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;(2)c点到b点的距离。图1解析:(1)先找圆心,过b点
2、逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距O点距离为圆的半径,据牛顿第二定律有:解得 过圆心作bd的垂线,粒子在磁场中运动的轨迹如图2所示:要使磁场的区域有最小面积,则Oa应为磁场区域的直径,由几何关系知:图2由得所以圆形匀强磁场的最小面积为:(2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知识有:而 联立解得二、参数方法例2. 在xOy平面内有许多电子(质量为m、电荷量为e),从坐标原点O不断地以相同的速率沿不同方向射入第一象限,如图3所示。现加一个垂直于平面向里,磁感应强度为B的匀
3、强磁场,要使这些电子穿过磁场区域后都能平行于x轴向x轴正向运动。求符合该条件磁场的最小面积。图3解析:由题意可知,电子是以一定速度从原点O沿任意方向射入第一象限时,先考察速度沿+y方向的电子,其运动轨迹是圆心在x轴上的A1点、半径为的圆。该电子沿圆弧OCP运动至最高点P时即朝x轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5。当电子速度方向与x轴正向成角度时,作出轨迹图4,当电子达到磁场边界时,速度方向必须平行于x轴方向,设边界任一点的坐标为,由图4可知:图4,消去参数得:可以看出随着的变化,S的轨迹是圆心为(0,R),半径为R的圆,即是磁场区域的下边界。上下边界就构成一个叶片形磁场区域
4、。如图5所示。则符合条件的磁场最小面积为扇形面积减去等腰直角三角形面积的2倍。图5 带电粒子在磁场中运动之磁场最小范围问题剖析近年来在考题中多次出现求磁场的最小范围问题,这类题对学生的平面几何知识与物理知识的综合运用能力要求较高。其难点在于带电粒子的运动轨迹不是完整的圆,其进入边界未知的磁场后一般只运动一段圆弧后就飞出磁场边界,运动过程中的临界点(如运动形式的转折点、轨迹的切点、磁场的边界点等)难以确定。下面我们以实例对此类问题进行分析。 一、磁场范围为圆形 例1一质量为、带电量为的粒子以速度从O点沿轴正方向射入磁感强度为的一圆形匀强磁场区域,磁场方向垂直于纸面,
5、粒子飞出磁场区后,从处穿过轴,速度方向与轴正向夹角为30°,如图1所示(粒子重力忽略不计)。 试求:(1)圆形磁场区的最小面积; (2)粒子从O点进入磁场区到达点所经历的时间; (3)点的坐标。解析:(1)由题可知,粒子不可能直接由点经半个圆周偏转到点,其必在圆周运动不到半圈时离开磁场区域后沿直线运动到点。可知,其离开磁场时的临界点与点都在圆周上,到圆心的距离必相等。如图2,过点逆着速度的方向作虚线,与轴相交,由于粒子在磁场中偏转的半径一定,且圆心位于轴上,距O点距离和到虚线上点垂直距离相等的点即为圆周运动的圆心,圆的半径。由 ,得。弦长为:,
6、;要使圆形磁场区域面积最小,半径应为的一半,即:, 面积(2)粒子运动的圆心角为1200,时间。(3)距离 ,故点的坐标为(,0)。 点评:此题关键是要找到圆心和粒子射入、射出磁场边界的临界点,注意圆心必在两临界点速度垂线的交点上且圆心到这两临界点的距离相等;还要明确所求最小圆形磁场的直径等于粒子运动轨迹的弦长。 二、磁场范围为矩形 例2如图3所示,直角坐标系第一象限的区域存在沿轴正方向的匀强电场。现有一质量为,电量为的电子从第一象限的某点(,)以初速度沿轴的负方向开始运动,经过轴上的点(,0)进入第四象限,先做匀速直线运动然后进入垂直纸面的矩形匀强磁场
7、区域,磁场左边界和上边界分别与轴、轴重合,电子偏转后恰好经过坐标原点O,并沿轴的正方向运动,不计电子的重力。求 (1)电子经过点的速度; (2)该匀强磁场的磁感应强度和磁场的最小面积。 解析:(1)电子从点开始在电场力作用下作类平抛运动运动到点,可知竖直方向:,水平方向:。 解得。而,所以电子经过点时的速度为:,设与方向的夹角为,可知,所以300。 (2)如图4,电子以与成30°进入第四象限后先沿做匀速直线运动,然后进入匀强磁场区域做匀速圆周运动恰好以沿轴向上的速度经过点。可知圆周运动的圆心一定在轴上,且点到O点的距离与到直线上M点(
8、M点即为磁场的边界点)的垂直距离相等,找出点,画出其运动的部分轨迹为弧MNO,所以磁场的右边界和下边界就确定了。设偏转半径为,由图知,解得,方向垂直纸面向里。 矩形磁场的长度,宽度。 矩形磁场的最小面积为: 点评:此题中粒子进入第四象限后的运动即为例1中运动的逆过程,解题思路相似,关键要注意矩形磁场边界的确定。 三、磁场范围为三角形 例3如图5,一个质量为,带电量的粒子在BC边上的M点以速度垂直于BC边飞入正三角形ABC。为了使该粒子能在AC边上的N点(CMCN)垂真于AC边飞出ABC,可在适当的位置加一个垂直于纸面向里,磁感应强度为B的匀强磁
9、场。若此磁场仅分布在一个也是正三角形的区域内,且不计粒子的重力。试求: 1)粒子在磁场里运动的轨道半径及周期T; (2)该粒子在磁场里运动的时间t;(3)该正三角形区域磁场的最小边长;解析:(1)由和,得: , (2)由题意可知,粒子刚进入磁场时应该先向左偏转,不可能直接在磁场中由M点作圆周运动到N点,当粒子刚进入磁场和刚离开磁场时,其速度方向应该沿着轨迹的切线方向并垂直于半径,如图6作出圆O,粒子的运动轨迹为弧GDEF,圆弧在点与初速度方向相切,在F点与出射速度相切。画出三角形
10、,其与圆弧在D、E两点相切,并与圆交于F、G两点,此为符合题意的最小磁场区域。由数学知识可知FOG600,所以粒子偏转的圆心角为3000,运动的时间 (3)连接并延长与交与点,由图可知,点评:这道题中粒子运动轨迹和磁场边界临界点的确定比较困难,必须将射入速度与从AC边射出速度的反向延长线相交后根据运动半径已知的特点,结合几何知识才能确定。另外,在计算最小边长时一定要注意圆周运动的轨迹并不是三角形磁场的内切圆。四、磁场范围为树叶形例4在平面内有许多电子(质量为、电量为),从坐标O不断以相同速率沿不同方向射入第一象限,如图7所示。现加一个垂直于平面向内、磁感强度为的匀强磁场
11、,要求这些电子穿过磁场后都能平行于轴向正方向运动,求符合该条件磁场的最小面积。解析:电子在磁场中运动半径是确定的,设磁场区域足够大,作出电子可能的运动轨道如图8所示,因为电子只能向第一象限平面内发射,其中圆O1和圆O2为从圆点射出,经第一象限的所有圆中的最低和最高位置的两个圆。圆O2在轴上方的个圆弧odb就是磁场的上边界。其它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O1OmO2 。由于要求所有电子均平行于x轴向右飞出磁场,故由几何知识知电子的飞出点必为每条可能轨迹的最高点。可证明,磁场下边界为一段圆弧,只需将这些圆心连线(图中虚线O1O2)向上平移一段长度为的距离即图9中的弧
12、ocb就是这些圆的最高点的连线,即为磁场区域的下边界。两边界之间图形的阴影区域面积即为所求磁场区域面积:。 还可根据圆的知识求出磁场的下边界。设某电子的速度V0与x轴夹角为,若离开磁场速度变为水平方向时,其射出点也就是轨迹与磁场边界的交点坐标为(x,y),从图10中看出,即(x0,y0),这是个圆方程,圆心在(0,R)处,圆的 圆弧部分即为磁场区域的下边界。点评:这道题与前三题的区别在于要求学生通过分析确定磁场的形状和范围,磁场下边界的处理对学生的数理结合能力和分析能力要求较高。 由以上题目分析可知,解决此类问题的关键是依据题意,分析物体的运动过程和运动形式,扣住运动过程中
13、的临界点,应用几何知识,找出运动的轨迹圆心,画出粒子运动的部分轨迹,确定半径,再用题目中规定形状的最小磁场覆盖粒子运动的轨迹,然后应用数学工具和相应物理规律分析解出所求的最小面积即可。2011-2012年高二培优(9)磁场最小面积的确定方法电磁场内容历来是高考中的重点和难点。近年来求磁场的问题屡屡成为高考中的热点,而这类问题单纯从物理的角度又比较难求解,下面介绍几种数学方法。【教你一手】一、几何法例1. 一质量为m、电荷量为+q的粒子以速度,从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为30
14、6;,同时进入场强为E、方向沿与x轴负方向成60°角斜向下的匀强电场中,通过了b点正下方的c点,如图所示,粒子的重力不计,试求:(1)圆形匀强磁场区域的最小面积;(2)c点到b点的距离。解析:(1)先找圆心,过b点逆着速度v的方向作直线bd,交y轴于d,由于粒子在磁场中偏转的半径一定,且圆心位于Ob连线上,距O点距离为圆的半径,据牛顿第二定律有:解得过圆心作bd的垂线,粒子在磁场中运动的轨迹如图所示:要使磁场的区域有最小面积,则Oa应为磁场区域的直径,由几何关系知:由得所以圆形匀强磁场的最小面积为:(2)带电粒子进入电场后,由于速度方向与电场力方向垂直,故做类平抛运动,由运动的合成知
15、识有:而联立解得二、参数方法例2在xOy平面内有许多电子(质量为m、电荷量为e),从坐标原点O不断地以相同的速率沿不同方向射入第一象限,如图所示。现加一个垂直于平面向里,磁感应强度为B的匀强磁场,要使这些电子穿过磁场区域后都能平行于x轴向x轴正向运动。求符合该条件磁场的最小面积。 解析:由题意可知,电子是以一定速度从原点O沿任意方向射入第一象限时,先考察速度沿+y方向的电子,其运动轨迹是圆心在x轴上的A1点、半径为的圆。该电子沿圆弧OCP运动至最高点P时即朝x轴的正向,可见这段圆弧就是符合条件磁场的上边界,见图5。当电子速度方向与x轴正向成角度时,作出轨迹图,当电子达到磁场边界时,速度方向必须
16、平行于x轴方向,设边界任一点的坐标为,由图可知:,消去参数得:可以看出随着的变化,S的轨迹是圆心为(0,R),半径为R的圆,即是磁场区域的下边界。上下边界就构成一个叶片形磁场区域。如图所示。则符合条件的磁场最小面积为扇形面积减去等腰直角三角形面积的2倍。三、带电粒子在磁场中的运动例题例3在如图所示的平面直角坐标系xoy中,有一个圆形区域的匀强磁场(图中未画出),磁场方向垂直于xoy平面,O点为该圆形区域边界上的一点。现有一质量为m,带电量为+q的带电粒子(重力不计)从O点为以初速度vo沿+x方向进入磁场,已知粒子经过y轴上p点时速度方向与+y方向夹角为30º,OP=L 求:磁感应强度
17、的大小和方向; 该圆形磁场区域的最小面积。解:(1)由左手定则得磁场方向垂直xOy平面向里粒子在磁场中做弧长为圆周的匀速圆周运动,如图所示,粒子在Q点飞出磁场设其圆心为,半径为R由几何关系有(LR)sin30°R,所以RL由牛顿第二定律有,故由以上各式得磁感应强度(2)设磁场区的最小面积为S由几何关系得直径,所以S四、穿越有界场的轨迹分析V0XYA O例4如图所示,在y0区域内存在匀强磁场,方向垂直于XY平面并指向纸外,磁感应强度为B,一带正电的粒子从Y轴上的A点,以速度v0与Y轴负半轴成夹角射出,进入磁场后,经磁场的偏转最终又恰能通过A点,A点的坐标为(0,a)试问该粒子的比荷为多
18、少?从A点射出到再次经过A点共要多少时间?解析: 几何关系 在磁场中偏转时间 匀速运动的时间 联立 及分别可得 粒子的比荷 总时间 【小试身手】1.一个负离子,质量为m,电量大小为q,以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图所示,磁感强度B的方向与离子的运动方向垂直,并垂直于纸面向里(1)求离子进入磁场后到达屏S上时的位置与O点的距离(2)如果离子进入磁场后经过时间t到达位置P,试证明:直线0P与离子入射方向之间的夹角跟t关系是2.一匀磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内。一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初
19、速为v,方向沿x正方向。后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O的距离为L,如图所示。不计重力的影响。求磁场的磁感强度B的大小和xy平面上磁场区域的半径R。3. 设在地面上方的真空室内存在匀强电场和匀强磁场.已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T.今有一个带负电的质点以v=20m/s的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示).4. 如图所示,在x轴上方有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方
20、有沿y轴负方向的匀强电场,场强为E。一质量为m,电量为-q的粒子从坐标原点O沿着y轴正方向射出。射出之后,第三次到达x轴时,它与点O的距离为L。求此粒子射出时的速度v和运动的总路程s(重力不计)。5.如图所示,在y0的空间中存在匀强电场,场强沿y轴负方向;在y0的空间中,存在匀强磁场,磁场方向垂直xy平面(纸面)向外。一电量为q、质量为m的带正电的运动粒子,经过y轴上yh处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x2h处的 P2点进入磁场,并经过y轴上y2h处的P3点。不计重力。求(l)电场强度的大小。(2)粒子到达P2时速度的大小和方向。(3)磁感应强度的大小。1解析:(1)
21、离子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动。设圆半径为r,则据牛顿第二定律可得: ,解得如图所示,离了回到屏S上的位置A与O点的距离为:AO=2r所以(2)当离子到位置P时,圆心角:因为,所以。2解:粒子在磁场中受各仑兹力作用,作匀速圆周运动,设其半径为r, 据此并由题意知,粒子在磁场中的轨迹的圆心C必在y轴上,且P点在磁场区之外。过P沿速度方向作延长线,它与x轴相交于Q点。作圆弧过O点与x轴相切,并且与PQ相切,切点A即粒子离开磁场区的地点。这样也求得圆弧轨迹的圆心C,如图所示。由图中几何关系得:L=3r 由、求得 图中OA的长度即圆形磁场区的半径R,由图中几何关系可
22、得 解:根据带电质点做匀速直线运动的条件,得知此带电质点所受的重力、电场力和洛仑兹力的合力必定为零.由此推知此三个力在同一竖直平面内,如右图所示,质点的速度垂直纸面向外.3解法一:由合力为零的条件,可得求得带电质点的电量与质量之比因质点带负电,电场方向与电场力方向相反,因而磁场方向也与电场力方向相反.设磁场方向与重力方向之间夹角为,则有qEsin=qvBcos,解得即磁场是沿着与重力方向夹角=arctg0.75,且斜向下方的一切方向.解法二:因质点带负电,电场方向与电场力方向相反,因而磁砀方向也与电场力方向相反.设磁场方向与重力方向间夹角为,由合力为零的条件,可得qEsin=qvBcos,
23、160; qEcos+qvBsin=mg,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 塑料薄膜的耐蒸煮性能研究考核试卷
- 纺织品生产过程中的节能与减排考核试卷
- 海洋气象学发展与研究技术探讨进展考核试卷
- 物流配送模式与创新考核试卷
- 电气设备营销策略创新考核试卷
- 火花点火发动机的原理及应用考核试卷
- 特色户外健身路径规划与设备实施考核试卷
- 冀中职业学院《动物生物化学教学实习》2023-2024学年第二学期期末试卷
- 三峡大学科技学院《跨文化交流概论》2023-2024学年第二学期期末试卷
- 天津电子信息职业技术学院《建筑设计(3)》2023-2024学年第二学期期末试卷
- 东北三省四市教研联合体2025年高考模拟考试(一)地理试题(含答案)
- 2024-2025学年人教版七年级数学(下)期中试卷(考试范围:第7-9章)(含解析)
- 2025年中国城市更新行业市场运行现状及投资规划建议报告
- 安徽省合肥市2024-2025学年高三下学期第二次教学质量检测地理试题(原卷版+解析版)
- 2025解除劳动合同通知书试用期
- 离婚协议书 标准版电子版(2025年版)
- 2025年服装制版师(高级)职业技能鉴定考试题库
- 2024年北京石景山区事业单位招聘笔试真题
- 员工外派学习合同范本
- 翡翠鉴定培训课件
- 安徽省2025年中考语文作文评分标准
评论
0/150
提交评论