版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、经济数学基础(10秋)模拟试题(一) 2010年12月一、单项选择题(每小题3分,本题共15分)1.下列各函数对中,( )中的两个函数相等(A) , (B) ,+ 1(C) , (D) ,2.下列结论中正确的是( )(A) 使不存在的点x0,一定是f (x)的极值点(B) 若(x0) = 0,则x0必是f (x)的极值点(C) x0是f (x)的极值点,则x0必是f (x)的驻点(D) x0是f (x)的极值点,且(x0)存在,则必有(x0) = 03.在切线斜率为2x的积分曲线族中,通过点(1, 4)的曲线为()(A) (B) (C) (D) 4.设是矩阵,是矩阵,且有意义,则是( )矩阵(
2、A) (B) (C) (D) 5.若元线性方程组满足秩,则该线性方程组( )(A) 有无穷多解 (B) 有唯一解(C) 有非0解 (D) 无解 二、填空题(每小题3分,共15分)1.函数的定义域是 2.曲线在处的切线斜率是 3. 4.若方阵满足 ,则是对称矩阵5.线性方程组有解的充分必要条件是 三、微积分计算题(每小题10分,共20分)1. 设,求2. 计算定积分四、线性代数计算题(每小题15分,共30分)3. 已知,其中,求4. 设齐次线性方程组,为何值时,方程组有非零解?在有非零解时求其一般解五、应用题(本题20分)设某产品的固定成本为36(万元),且边际成本为(万元/百台)试求产量由4百
3、台增至6百台时总成本的增量,及产量为多少时,可使平均成本达到最低经济数学基础(10秋)模拟试题(一)答案(供参考)2010年12月一、单项选择题(每小题3分,本题共15分) 1.D 2.D 3.C 4.A 5.B二、填空题(每小题3分,本题共15分)1. 2. 3. 4. 5. 秩秩三、微积分计算题(每小题10分,共20分)1. 解:由微分四则运算法则和微分基本公式得2. 解:由分部积分法得四、线性代数计算题(每小题15分,共30分) 3. 解:利用初等行变换得即 由矩阵乘法和转置运算得4. 解:因为所以,当时方程组有非零解 一般解为(其中为自由未知量) 五、应用题(本题20分)解:当产量由4
4、百台增至6百台时,总成本的增量为 = 100(万元) 又 = =令 , 解得又该问题确实存在使平均成本达到最低的产量,所以,当时可使平均成本达到最小 经济数学基础(10秋)模拟试题(二)2010年12月 一、单项选择题(每小题3分,共15分) 1设,则( ) A B C D 2已知,当( )时,为无穷小量A B C D 3. 若是的一个原函数,则下列等式成立的是( ) A BC D 4以下结论或等式正确的是( ) A若均为零矩阵,则有 B若,且,则 C对角矩阵是对称矩阵 D若,则 5线性方程组 解的情况是( )A. 有无穷多解 B. 只有0解 C. 有唯一解 D. 无解 二、填空题(每小题3分
5、,共15分)6设,则函数的图形关于对称 7函数的驻点是 8若,则 9设矩阵,I为单位矩阵,则 10齐次线性方程组的系数矩阵为则此方程组的一般解为 三、微积分计算题(每小题10分,共20分)11设,求 12计算积分四、代数计算题(每小题15分,共50分) 13设矩阵,求解矩阵方程 14讨论当a,b为何值时,线性方程组无解,有唯一解,有无穷多解.五、应用题(本题20分) 15生产某产品的边际成本为(q)=8q(万元/百台),边际收入为(q)=100-2q(万元/百台),其中q为产量,问产量为多少时,利润最大?从利润最大时的产量再生产2百台,利润有什么变化?经济数学基础(10秋)模拟试题(二)答案
6、(供参考) 2010年12月一、 单项选择题(每小题3分,共15分)1C 2. A 3. B 4. C 5. D 二、填空题(每小题3分,共15分)6. y轴 7. x=1 8. 9. 10,是自由未知量三、微积分计算题(每小题10分,共20分)11解:因为 所以 12解: 四、线性代数计算题(每小题15分,共30分)13解:因为即 所以,X = 14解:因为 所以当且时,方程组无解; 当时,方程组有唯一解; 当且时,方程组有无穷多解. 五、应用题(本题20分)15. 解:(q) =(q) -(q) = (100 2q) 8q =100 10q 令(q)=0,得 q = 10(百台) 又q =
7、 10是L(q)的唯一驻点,该问题确实存在最大值,故q = 10是L(q)的最大值点,即当产量为10(百台)时,利润最大. 又 D 18分即从利润最大时的产量再生产2百台,利润将减少20万元. 20分经济数学基础(模拟试题1)一、单项选择题(每小题3分,共15分)1函数的定义域是( ) AB CD 且2函数 在x = 0处连续,则k = ( )A-2 B-1 C1 D2 3下列不定积分中,常用分部积分法计算的是( ) A B C D4设A为矩阵,B为矩阵,则下列运算中( )可以进行 AAB BABT CA+B DBAT5. 设线性方程组的增广矩阵为,则此线性方程组的一般解中自由未知量的个数为(
8、 )A1 B2 C3 D4二、填空题(每小题3分,共15分) 6设函数,则 7设某商品的需求函数为,则需求弹性 8积分 9设均为阶矩阵,可逆,则矩阵方程的解X= 10. 已知齐次线性方程组中为矩阵,则 三、微积分计算题(每小题10分,共20分) 11设,求12计算积分 四、代数计算题(每小题15分,共50分) 13设矩阵A =,计算 14求线性方程组的一般解五、应用题(本题20分)15已知某产品的边际成本为(万元/百台),为产量(百台),固定成本为18(万元),求最低平均成本. 模拟试题1答案及评分标准 (供参考)一、单项选择题(每小题3分,共15分)1D 2. C 3. C 4. A 5.
9、B 二、填空题(每小题3分,共15分)6 7. 8. 0 9. 103三、微积分计算题(每小题10分,共20分)11解: 7分 10分12解: 10分四、线性代数计算题(每小题15分,共30分)13解:因为 5分且 13分所以 15分14解:因为增广矩阵 10分所以一般解为 (其中是自由未知量) 15分五、应用题(本题20分)15解:因为总成本函数为 = 5分当= 0时,C(0) = 18,得 c =18,即 C()= 8分又平均成本函数为 12分令 , 解得= 3 (百台) 17分该问题确实存在使平均成本最低的产量. 所以当x = 3时,平均成本最低. 最底平均成本为 (万元/百台) 20分
10、经济数学基础(模拟试题2)一、单项选择题(每小题3分,共15分)1下列各函数对中,( )中的两个函数相等 A, B,+ 1 C, D, 2当时,下列变量为无穷小量的是( ) A B C D 3若,则f (x) =( ) A B- C D- 4设是可逆矩阵,且,则( ).A B C D 5设线性方程组有无穷多解的充分必要条件是( ) A B C D 二、填空题(每小题3分,共15分) 6已知某商品的需求函数为q = 180 4p,其中p为该商品的价格,则该商品的收入函数R(q) = 7曲线在点处的切线斜率是 8 9设为阶可逆矩阵,则(A)= 10设线性方程组,且,则时,方程组有唯一解 三、微积分
11、计算题(每小题10分,共20分)11设,求12计算积分 四、代数计算题(每小题15分,共50分) 13设矩阵 A =,B =,计算(AB)-1 14求线性方程组的一般解五、应用题(本题20分) 15设生产某种产品个单位时的成本函数为:(万元),求:(1)当时的总成本、平均成本和边际成本;(2)当产量为多少时,平均成本最小?模拟试题2参考解答及评分标准二、 单项选择题(每小题3分,共15分)1D 2. A 3. C 4. C 5. B 二、填空题(每小题3分,共15分)6. 45q 0.25q 2 7. 8. 0 9. n 10三、微积分计算题(每小题10分,共20分)11解:因为 所以 12解
12、: 四、线性代数计算题(每小题15分,共30分)13解:因为AB = (AB I ) = 所以 (AB)-1= 14解:因为系数矩阵 所以一般解为 (其中,是自由未知量) 五、应用题(本题20分)15解:(1)因为总成本、平均成本和边际成本分别为:, 所以, , (2)令 ,得(舍去) 因为是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20时,平均成本最小. 经济数学基础(模拟试题3)一、单项选择题(每小题3分,共15分) 1若函数,则( ) A-2 B-1 C-1.5 D1.5 2曲线在点(0, 1)处的切线斜率为( ) A B C D 3下列积分值为0的是( ) A BC D 4设
13、,是单位矩阵,则( ) A B C D 5. 当条件( )成立时,元线性方程组有解A. B. C. D. 二、填空题(每小题3分,共15分)6如果函数对任意x1, x2,当x1 x2时,有 ,则称是单调减少的. 7已知,当 时,为无穷小量 8若,则= .9. 设均为n阶矩阵,其中可逆,则矩阵方程的解10设齐次线性方程组,且 = r n,则其一般解中的自由未知量的个数等于 三、微积分计算题(每小题10分,共20分)11设,求. 12 四、线性代数计算题(每小题15分,共30分) 13设矩阵 ,计算 14当取何值时,线性方程组 有解?并求一般解 五、应用题(本题20分) 15某厂每天生产某种产品件
14、的成本函数为(元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 参考答案(模拟试题3)三、 单项选择题(每小题3分,共15分)1A 2. B 3. C 4. A 5. D 二、填空题(每小题3分,共15分)6. 7. 8. 9. 10n r三、微积分计算题(每小题10分,共20分)11解:因为 = 所以 = = 0 12解:= = 四、线性代数计算题(每小题15分,共30分)13解:因为 = = = 且 =所以 =2 14解 因为增广矩阵 所以,当=0时,线性方程组有无穷多解,且一般解为: 是自由未知量五、应用题(本题20分)15解:因为 = () = 令=0,即=0,
15、得=140,= -140(舍去). =140是在其定义域内的唯一驻点,且该问题确实存在最小值. 所以=140是平均成本函数的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为 =176 (元/件) 经济数学基础(模拟试题4) 一、单项选择题(每小题3分,共15分)1下列函数中为偶函数的是( ) A BC D 2函数的连续区间是( ) A B C D 3设,则=( ) A B C D 4. 设为同阶方阵,则下列命题正确的是( ).A.若,则必有或 B.若,则必有,C.若秩,秩,则秩 D. 5设线性方程组有惟一解,则相应的齐次方程组( ) A无解 B只有0解 C有非0解 D解不能确定 二、填空题(每小题3分,共15分)6函数的定义域是 . 7过曲线上的一点(0,1)的切线方程为 8= 9设,当 时,是对称矩阵.10线性方程组的增广矩阵化成阶梯形矩阵后为则当= 时,方程组有无穷多解. 三、微积分计算题(每小题10分,共20分)11设,求 12 四、代数计算题(每小题15分,共30分) 13设矩阵,求 14求线性方程组的一般解 五、应用题(20分) 15已知某产品的销售价格(单位:元件)是销量(单位:件)的函数,而总成本为(单位:元),假设生产的产品全部售出,求产量为多少时,利润最大?最大利润是多少? 参考答案(模拟试题4) 一、单项选择题(每小题3分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南京航空航天大学《材料力学》2022-2023学年第一学期期末试卷
- 【初中化学】物质构成的奥秘单元复习题 2024-2025学年九年级化学人教版(2024)上册
- 反思性说课稿模板
- 西安桥梁施工组织设计方案
- 南京工业大学浦江学院《客户服务管理》2022-2023学年第一学期期末试卷
- 《学会沟通交流》说课稿
- 《桃花源记》说课稿7
- 卡通动物课件教学课件
- 南京工业大学《陶艺设计》2022-2023学年第一学期期末试卷
- 南京工业大学《桥梁工程施工》2022-2023学年第一学期期末试卷
- 北师大版六年级数学上册-第一单元《圆》复习课件
- 盛世华诞庆祝祖国成立75周年共筑中国梦同庆国庆节课件
- 2024年广州市少年宫公开招聘工作人员历年高频考题难、易错点模拟试题(共500题)附带答案详解
- 全过程工程咨询管理服务方案投标方案(技术方案)
- 景观水处理技术介绍
- 6.2反比例函数的图象与性质(第一课时)教学设计2024-2025学年北师大版数学九年级上册
- 了解红旗渠学习红旗渠精神
- 集团母子公司协议书
- 检察院预防职务犯罪讲座
- 2024年二级建造师继续教育题库及答案(500题)
- 大数据在文学作品影响力分析中的应用
评论
0/150
提交评论