二项分布概念与图表和查表方法_第1页
二项分布概念与图表和查表方法_第2页
二项分布概念与图表和查表方法_第3页
二项分布概念与图表和查表方法_第4页
二项分布概念与图表和查表方法_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、二项分布概念及图表二项分布就是重复 n次独立的伯努利试验。在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为 n重伯努利实验,当试验次数为1时,二项分布服从0-1分布。中文名二项分布外文名Binomial Distribution提WT伯努利涉及实验伯努利试验;两点分布属于概率论与数理统计应用学科大气科学;气候学;计算机科学目录1定义?统计学定义?医学定义2概念3性质4图形特点5应用条件6应用实例定义统计学定义在概率论和统计学中, 二项分布是n个独立的是/非试验中成功的次数的离

2、散概率分布,其中每次试验的成功概率为 p。这样的单次成功/失败试验又称为伯努利试验。实际上,当也三a时,二项分布就是伯努利分布,二项分布是显著性差异的二项试验的基础。医学定义在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomous variable ),如对病人治疗结果的有效与无效,某种化验结果的阳性与阴性,接触某 传染源的感染与未感染等。二项分布( binomial distribution )就是对这类只具有两种互斥结果的离散 型随机事件的规律性进行描述的一种概率分布。考虑只有两种可能结果的随机试验,当成功的概率( 面)是恒定的,且各次试验

3、相互独立,这 种试验在统计学上称为伯努利试验( Bernoulli trial )。如果进行0次伯努利试验,取得成功次数为 X(X=°,1,_2.,可|的概率可用下面的一.项分布概率公式来描述:P=C(X,n)* Tt AX*(1 -兀)A(n-X)二项分布公式式中的n为独立的伯努利试验次数,兀为成功的概率,(1-兀)为失败的概率,X为在n次伯努里试验中出现成功的次数,表示在n次试验中出现X的各种组合情况,在此称为二项系数( binomial coefficient )。所以的含义为:含量为 n的样本中,恰好有 X例阳性数的概率。概念二项分布(Binomial Distributio

4、n ),即重复 n 次的伯努利试验(Bernoulli Experiment ),用 E 表示随机试验的结果。(上二 *,同)/二项分布公式如果事件发生的概率是P,则不发生的概率 q=1-p , N次独立重复试验中发生K次的概率是P(E=K尸 C(n,k) * pAk * (1 -p)A(n-k),其中 C(n, k) =n!/(k!(n-k)!),注意:第二个等号后面的括号里 的是上标,表示的是方哥。那么就说这个属于二项分布。其中P称为成功概率。记作 E B(n,p)期望:EE =np;方差:DE =npq;其中q=1-p且在每次试0-1 )分布证明:由二项式分布的定义知, 随机变量X是n重

5、伯努利实验中事件 A发生的次数, 验中A发生的概率为p。因此,可以将二项式分布分解成 n个相互独立且以p为参数的 随机变量之和。设随机变量 X (k) (k=1,2,3.n)服从(0-1)分布,则 X=X(1)+X(2)+X(3).X(n).因X(k)相互独立,所以期望:F G)= E X (1) + X (2) + X (3)一 + X (研方差:证毕。如果1 .在每次试验中只有两种可能的结果,而且是互相对立的;2 .每次实验是独立的,与其它各次试验结果无关;3 .结果事件发生的概率在整个系列试验中保持不变,则这一系列试验称为伯努利实验。t * s 在这试验中,事件发生的次数为一随机事件,它

6、服从二次分布。二项分布可, i:1.卡二项分布二#由 8<>r f) t一T,E.ri”邛 以用于可靠性试验。可靠性试验常常是投入 n个相同的式样进行试验 T小时,而只允许k个式样失败, 应用二项分布可以得到通过试验的概率。若某事件概率为 p,现重复试验n次,该事件发生k次的概率为:P=C(n,k) XpAkx(l-p)A(n-k) °C(n,k) 表示组合数,即从 n个事物中拿出k个的方法数。性质(一)二项分布是离散型分布,概率直方图是跃阶式的。因为x为不连续变量,用概率条图表示更合适,用直方图表示只是为了更形象些。1 .当p=q时图形是对称的例如,P + V , p=

7、q=1/2 ,各项的概率可写作:2 .当pwq时,直方图呈偏态,p<q与p>q的偏斜方向相反。如果 n很大,即使pwq,偏态逐渐 降低,最终成正态分布,二项分布的极限分布为正态分布。故当n很大时,二项分布的概率可用正态分布的概率作为近似值。何谓 n很大呢?一般规定:当p<q且np>5,或p>q且nq>5,这时的n就被 认为很大,可以用正态分布的概率作为近似值了。(二)二项分布的平均数与标准差如果二项分布满足 p<q , np>5,(或p>q , np>5附,二项分布接近正态分布。这时,也仅仅在这 时,二项分布的x变量(即成功的次数)具

8、有如下性质:匕=三即x变量具有=np ,的正态分布。式中n为独立试验的次数,p为成功事件的概率,q=1- p。由于n很大时二项分布逼近正态分布, 其平均数,标准差是根据理论推导而来的,故用 科和b而不用X和S表示。它们的含意是指在二项 试验中,成功的次数的平均数 科=np ,成功次数的分散程 。例如一个掷10枚硬币的试验,出现正面向上的平均次数为 5次(尸np=),正面向上的散布程度为 V10X(1/2) X (1/2)= 1.58(次),这是根据 理论的计算,而在实际试验中,有的人可得10个正面向上,有人得 9个、8个 ,人数越多,正面向上的平均数越接近 5,分散程度越接近1.58。图形特点

9、(1)当(n+1 ) p不为整数时,二项概率 PX=k在k=(n+1)p时达到最大值;(2)当(n+1) p为整数时,二项概率 PX=k在k=(n+1)p和k=(n+1)p-1时达到最大值。注:x为不超过x的最大整数。应用条件1 .各观察单位只能具有相互对立的一种结果,如阳性或阴性,生存或死亡等,属于两分类资料。2 .已知发生某一结果(阳性)的概率为 兀,其对立结果的概率为 1-兀,实际工作中要求 兀是从 大量观察中获得比较稳定的数值。但巴臼区三X项分布公式3 . n次试验在相同条件下进行,且各个观察单位的观察结果相互独立,即每个观察单位的观察结果不会影响到其他观察单位的结果。如要求疾病无传染

10、性、无家族性等。应用实例二项分布在心理与教育研究中,主要用于解决含有机遇性质的问题。所谓机遇问题,即指在实验 或调查中,实验结果可能是由猜测而造成的。比如,选择题目的回答,划对划错,可能完全由猜测造 成。凡此类问题,欲区分由猜测而造成的结果与真实的结果之间的界限,就要应用二项分布来解决。 下面给出一个例子。已知有正误题10题,问答题者答对几题才能认为他是真会,或者说答对几题,才能认为不是出 于猜测因素?分析:此题 三亘三Jd,即猜对猜错的概率各为0.5。匣空,故此二项分布接近正态分布:.二桂p = LU x U.5 二 5根据正态分布概率,当 Z=1.645时,该点以下包含了全体的95%。如果

11、用原分数表示,则为产L645五=51L6455fL5K= 73装画它的意义是,完全凭猜测,10题中彳1对8题以下的可能性为 95%,猜对8、9、10题的概率只5%。因此可以推论说,答对 8题以上者不是凭猜测,而是会答。但应该明确:作此结论,也仍然有犯错误的可能,即那些完全靠猜测的人也有5%的可能性答对8、9、10道题。此题的概率值,还可用二项分布函数直接计算,亦得与正态分布近似的结果:b(8 10 0.5)=10*9/2*0.58*0.52 = 45/1024b(9 10 0.5)=10*0.59*0.51 = 10/1024b(10 10 0.5) = 1/1024根据概率加法, 答8题及其

12、以上的总概率为:45/1024+10/1024+1/1024=56/1024 = 0.0547 同理,可计算8题以下的I率为 95%。(近似)附表1二项分布表PX xn Pk (1 p)nknxP0.0010.0020.0030.0050.010.020.030.050.100.150.200.250.30200.9980).9960 0.9940 0.9900 0.9801 0.96()4 0.9409)0.90250.8100 0.7225 0.(6400 0.5325 0.4900211.0000.0000 1.0000 1.C000 0.99)99 0.99916 0.99910.99

13、750.9900 0.9775 0.!9600 0.9375 0.9100300.9970).9940 0.9910 0.9851 0.9793 0.9412 0.912''0.85740.7290 0.6141 0J5120 0.4219 0.3430311.0000.0000 1.0000 0.9999 0.99)97 0.99818 0.997L 0.99280.9720 0.9393 0.18960 0.8438 0.7840321.0000.0000 10000 1.0000 0.9999 0.9990 0.9966i 0.99200.9844 0.9730400.9

14、960).9920 0.9881 0.9801 0.9(>06 0.922!4 0.8853,0.81450.6561 0.5220 0.,4096 0.3164 0.2401411.0000.0000 0.9999 0.9999 0.99)94 0.9977 0.9948! 0.98600.9477 0.8905 0.18192 0.7383 0.6517421.0000 1.0000 1.0000 1.0000 0.9999 0.9995 0.99630.98800.9728 0.9492 0.<)163431.00001.0000 09999 0.9995 0.99)84 0

15、.99(>1 0.991500.9950).9900 0.9851 0.9752 0.95,10 0.903i9 0.858''0.77380.5905 C.4437 0.:3277 0.2373 0.1681511.0000.0000 0.9999 0.9998 0.99)90 0.996>2 0.9915;0.97740.9185 0.8352 0.7373 0.6328 0.5282521.0000 -.0000 1.0000 0.9999 0.9997 0.9988 0.99140.97340.9421 0.8965 0.83369531.00001.000

16、0 10000 0.9995 0.99)78 0.99:3 0.984,0.9692541.0000 (0.9999 09997 0.$990 0.9976600.9940).9881 0.9821 0.9704 0.94115 0.885i8 0.8330)0.73510.5314 0.3771 0.2621 0.1780 0.1176611.0000).9999 0.9999 0.9996 0.99)85 0.9943 0.9875;0.96720.8857 0.7765 0.(6554 0.5339 0.4202621.0000 1.0000 1.0000 1.(000 0.9998 0

17、.99915 0.9971! 0.98420.9527 0.9011 0.3306 0.7443631.00001.0000 09999 0.9987 0.99)41 0.98:)0 0.962,0.9295641.0000 0.9999 09996 0.9984 0.99)54 0.98911651.00001.0000 09999 0.9998 0.9993700.9930).9861 0.9792 0.9655 0.93>21 0.86811 0.8080)0.69830.4783 0.3206 0.2097 0.1335 0.0824711.0000).9999 0.9998 0

18、.9995 0.99)80 0.992!1 0.9829)0.95560.8503 0.7166 0J5767 0.4449 0.3294721.0000 .0000 1.0000 1.0000 0.9997 0.99911 0.9962! 0.97430.9262 0.8520 0.7564 0.6471731.00001.0000 09998 0.9973 0.9879 0.96(>7 0.929,0 0.8740741.00000.9998 09988 0.9953 0.98)71 0.9712751.0000 (0.9999 09996 0.9987 0.9962761.0000

19、1.0000 09999 0.9998800.9920).9841 0.9763 0.9607 0.9227 0.850)8 0.7837'0.66340.4305 0.2725 0.1678 0.1)01 0.0576811.0000).9999 0.9998 0.9993 0.99)73 0.98917 0.9777'0.94280.8131 0.6572 0J5033 0.3571 0.2553821.0000 .0000 1.0000 0.9999 0.9996 0.99817 0.9942! 0.96190.8948 0.7969 0.6785 0.5518831.0

20、0001.0000 09999 0.9996 0.9950 0.9786 0.9437'0.88620.8059841.00001.0000 09996 0.9971 0.9896 0.972>7 0.9420)851.00000.9998 09988 0.91958 0.9887861.00000.9999 09996 0.9987871.00001.0000 09999900.9910 ().9821 0.9733 0.9559 0.9135 0.8337 0.7602: 0.63020.3874 0.2316 0.1342 0.0751 0.0404911.0000 0).

21、9999 0.9997 0.9991 0.9966 0.98(9 0.97180.92880.7748 0.5995 0,4362 0.3)03 0.1960921.0000.0000 1.0000 0.9999 0.9994 0.9980 0.9916i 0.94700.8591 0.7382 0.6007 0.4528931.0000 .0000 0.9999 0.9994 0.9917 0.9661 0.91440.83430.7297941.00001.0000 09991 0.9944 0.9804 0.9511 0.9012!950.99990.9994 09969 0.91900

22、 0.9747961.00001.0000 09997 0.91987 0.9957971.00000.9999 09996981.00001.00001000.9900 0).9802 0.9704 0.9511 0.9C44 0.8171 0.73740.59870.3487 0.1969 0.1074 0.0563 0.02821011.0000 0).9998 0.9996 0.9989 0.9957 0.9838 0.9655i 0.91390.7361 0.5443 0.:3758 0.2440 0.14931021.0000.0000 1.0000 0.9999 0.9991 0

23、.9972 0.9885i 0.92980.8202 0.6778 0.525 6 0.38281031.0000 .0000 0.9999 0.9990 0.9872 0.9500 0.879,0.77590.64961041.0000 ().9999 09984 0.9901 0.96i72 0.9219 0.849:,1051.00000.9999 09986 0.9936 0.98103 0.952!71061.00000.9999 09991 0.91965 0.98941071.00000.9999 09996 0.99841081.00001.0000 099991091.000

24、01100.9891 0).9782 0.9675 0.9464 0.8953 0.800)7 0.7153i 0.56880.3138 0.1673 0.0859 0.0422 0.01981110.9999 ().9998 0.9995 0.9987 0.9948 0.9805 0.95870.89810.6974 0.4922 0.:3221 0.1971 0.11301121.0000 1.0000 1.0000 1.C000 0.9998 0.9988 0.9963i 0.98480.9104 0.7788 0.(6174 0.4552 0.31271131.0000 .0000 0

25、.9998 0.9984 0.9815 0.9306 0.83891 0.71330.56961141.0000 ().9999 09972 0.9841 0.9496 0.885M 0.789:,1151.00000.9997 09973 0.9883 0.9657 0.92181161.00000.9997 09980 0.9924 0.97841171.00000.9998 09988 0.99571181.00000.9999 099941191.00001.00001200.9881 0).9763 0.9646 0.9416 0.8864 0.78417 0.69380.54040

26、.2824 0.1422 0.()687 0.0317 0.01381210.9999 0).9997 0.9994 0.9984 0.9938 0.97(9 0.95140.88160.6590 0.4435 0.;2749 0.1584 0.08501221.0000 1.0000 1.0000 1.0000 0.9998 0.9985 0.9952: 0.98040.8891 0.7358 0J5583 0.3907 0.25281231.0000 ().9999 0.9997 0.9978 0.9744 0.9078 0.7946i 0.64880.49251241.00001.000

27、0 09998 0.91957 0.9761 0.92''4 0.842,0.72371251.00000.9995 09954 0.9806 0.9456 0.882!21260.99990.9993 09961 0.9857 0.96141271.00000.9999 09994 0.91972 0.99051281.00000.9999 09996 0.99831291.00001.0000 0999812101.00001300.9871 ().9743 0.9617 0.9369 0.8775 0.7690 0.67301 0.51330.2542 0.1209 0.

28、0550 0.0238 0.00971310.9999 0).9997 0.9993 0.9981 0.9928 0.9730 0.943(i 0.86460.6213 0.3983 0.,2336 0.1267 0.06371321.0000 1.0000 1.10000 1.C000 0.9997 0.9980 0.99380.97550.8661 0.6920 0.,5017 0.3326 0.20251331.0000 ().9999 0.9995 0.9969 0.96i58 0.8820 0.7473:0.58430.42061341.00001.0000 09997 0.9193

29、5 0.96i58 0.90()9 0.794()0.65431351.00000.9991 09925 0.9700 0998 0.83461360.99990.9987 09930 0.91757 0.93761371.00000.9998 09988 0.91944 0.98181381.00000.9998 09990 0.99601391.00000.9999 0999313101.00000.999913111.00001400.9861 0).9724 0.9588 0.9322 0.8687 0.7536 0.65280.48770.2288 0.1028 0.0440 0.0

30、178 0.00681410.9999 0).9996 0.9992 0.9978 0.9916 0.9690 0.9355i 0.84700.5846 0.3567 0.1979 0.1)10 0.04751421.0000 1.0000 1.0000 1.0000 0.9997 0.9975 0.9923i 0.96990.8416 0.6479 0.,4481 0.2311 0.16081431.0000 ().9999 0.9994 0.9958 0.95i59 0.8535 0.6982! 0.52130.35521441.00001.0000 09996 0.91908 0.95i

31、33 0.87()2 0.7415 0.58421451.00000.9985 09885 0.9561 0.8883 0.780)51460.99980.9978 09884 0.9617 0.90671471.00000.9997 09976 0.9897 0.96851481.00000.9996 09978 0.99171491.00000.9997 0998314101.00000.999814111.00001500.9851 ().9704 0.9559 0.9276 0.8601 0.7386 0.6333i 0.46330.2059 0.0874 0.()352 0.0134

32、 0.00471510.9999 0).9996 0.9991 0.9975 0.9904 0.96417 0.92701 0.82900.5490 0.3186 0.1671 0.0302 0.03531521.0000 1.0000 1.0000 0.9999 0.9996 0.9970 0.9906i 0.96380.8159 0.6042 0.:3980 0.2361 0.12581531.0000 .0000 09998 0.9992 0.9945 0.9444 0.8227'0.64820.4613 0.29691541.0000 ().9999 09994 0.9873

33、0.93i83 0.83(i8 0.686;5 0.51551551.0000 ().9999 09978 0.9832 0.93i89 0.8516 0.7211561.00000.9997 09964 0.9819 0.9434 0.868191571.0000 (0.9994 09958 0.9827 0.95001580.99990.9992 09958 0.98481591.00000.9999 09992 0.996315101.00000.9999 0999315111.00000.999915121.00001600.9841 ().9685 0.9531 0.9229 0.8

34、515 0.7238 0.6143i 0.44010.1853 C.0743 0.028 1 0.0100 0.00331610.9999 0).9995 0.9989 0.9971 0.9891 0.9601 0.9182: 0.81080.5147 0.2839 0.1407 0.0335 0.02611621.0000 1.0000 1.0000 0.9999 0.9995 0.99(3 0.98870.95710.7892 0.5614 0.:3518 0.1971 0.09941631.0000 .0000 0.9998 0.9989 0.9930 0.93,6 0.78991 0.

35、59810.4050 0.24591641.0000 ().9999 09991 0.91830 0.92109 0.791!2 0.630;? 0.44991651.0000 ().9999 09967 0.9765 0983 0.810)3 0.659J!1661.00000.9995 09944 0.9733 0.92!04 0.82471670.99990.9989 09930 0.9729 0.9:561681.00000.9998 09985 0.9925 0.97431691.00000.9998 09984 0.992916101.00000.9997 0998416111.0

36、0000.999716121.00001700.9831 0).9665 0.9502 0.9183 0.8429 0.7093 0.59580.41810.1668 0.0631 0.0225 0.0075 0.00231710.9999 0).9995 0.9988 0.9968 0.9877 0.9554 0.909,0.79220.4818 0.2525 0.1182 0.0501 0.01931721.0000 1.0000 1.0000 0.9999 0.9994 0.9956 0.9866i 0.94970.7618 0.5198 0.:3096 0.1637 0.0774173

37、1.0000 .0000 0.9997 0.9986 0.9912 0.9174 0.7556i 0.54890.3530 0.20191741.0000 (0.9999 09988 0.91779 0.90)13 0.751!2 0.573;)0.38871751.0000 ().9999 09953 0.9681 0.89)43 0.765;3 0.596J!1761.00000.9992 09917 0.9623 0.89)29 0.775i21770.99990.9983 09891 0.9598 0.89541781.00000.9997 09974 0.9876 0.9597179

38、1.00000.9995 09969 0.987317101.00000.9999 09994 0.996817111.00000.9999 0999317121.00000.999917131.00001800.9822 ().9646 0.9474 0.9137 0.8345 0.6951 0.57801 0.39720.1501 0.0536 0.0180 0.0056 0.00161810.9998 0).9994 0.9987 0.9964 0.9862 0.95C)5 0.89970.77350.4503 0.2241 0.0991 0.0395 0.01421821.0000 1

39、.0000 1.0000 0.9999 0.9993 0.9948 0.9843i 0.94190.7338 0.4797 0.;2713 0.1353 0.06001831.0000 .0000 09996 0.9982 0.9891 0.90,8 0.7202! 0.50100.3057 0.16461841.0000 ().9998 09985 0.91718 0.8794 0.71>4 0.518,'0.33271851.0000 ().9998 09936 0.9581 0.8(i71 0.715 0.53441861.00000.9988 09882 0.9487 0

40、.86»10 0.72171870.99980.9973 09837 0.9431 0.85931881.00000.9995 09957 0.9807 0.94041890.99990.9991 09946 0.979018101.00000.9998 09988 0.993918111.00000.9998 0998618121.00000.999718131.00001900.9812 ().9627 0.9445 0.9092 0.8262 0.6812 0.560()0.37740.1351 0.0456 0.0144 0.0042 0.00111910.9998 ().9

41、993 0.9985 0.9960 0.9847 0.9454 0.890()0.75470.4203 0.1985 0.0829 0.0310 0.01041921.0000 .0000 1.0000 0.9999 0.9991 0.9939 0.981,0.93350.7054 0.4413 0.2369 0.1113 0.04621931.0000 1.0000 0.9995 0.9978 0.9868 0.8850 0.68410.45510.2631 0.13321941.00000.9998 09980 0.9648 0.85i56 0.673,3 0.4654 0.28221951.0000).9998 09914 0.9463 0.83份9 0.6678 0.473!91961.00000.9983 09837 0.9)324 0.8;>51 0.66(551970.99970.9959 09767 0.<)225 0.81801981.00000.9992 09933 0.<)713 0.91611990.99990.9984 0.9911 0.<)67419101.00000.9997 0.9977 0.<)89519111.00000.9995 0,997219120.99990.999419131.000

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论