版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、SHANDONG 2012年6月Abstract摘 要.IABSTRACT.II目 录.III第一章 引 言.11.1 课题研究的背景及意义11.2 开关电源的技术动态21.3 本课题的主要研究内容2第二章 开关电源的原理.42.1 开关电源的基本原理42.2 开关电源的组成52.3 单端反激式拓扑分析52.3.1 工作原理52.3.2 基本关系式6第三章 系统设计.93.1 技术指标93.2 黑箱设计93.3 开关电源电路图103.4 关键元器件的选择与设计113.4.1 控制器芯片UC3844113.4.1.1 UC3844的内部结构及管脚功能123.4.1.2 UC3844的特点143.
2、4.2 线性光耦合器PC817143.4.3 可调精密并联稳压器TL431153.4.4 高频变压器的设计163.4.4.1 高频变压器作用163.4.4.2 高频变压器的设计173.4.5 输出级的设计193.4.6 功率MOSFET及其驱动电路设计203.4.6.1 功率MOSFET的选择203.4.6.2 功率MOSFET控制电路及其参数选择213.4.7 电压反馈电路设计223.4.7.1 电路图及原理223.4.7.2 元器件参数选择223.4.8 输入启动电路的设计233.4.9 输入整流滤波电路的设计243.4.9.1 电路原理图243.4.9.2 元器件参数选择243.4.10
3、 保护电路的设计253.5 电路工作过程总结26第四章 设计总结28参考文献29致 谢311.1 课题研究的背景及意义1.2 开关电源的技术动态高频方面。许多国家都步入MHz级别,涌现出众多新型高频磁性材料,其寄生参数和磁损耗减小,散热性增强,如56µm超薄钴基非晶态磁带,纳米结晶软磁薄膜也在研究。铁氧体或其他薄膜材料可集成在硅片上等。高效方面。致力于减小功率器件的通态电阻、降低漏电流等。如高性能碳化硅(SiC)功率半导体器件,其优点是:禁带宽,工作温度高(可达600°C),通态电阻小,导热性能好,漏电流极小,PN结耐压高等等。电磁兼容方面。主要研究典型电路与系统的电磁干扰
4、建模;PCB板和电源EMC优化设计软件;强磁场对人体的危害;大功率开关电源EMC测量方法的研究等。新型电容器。研发适合于功率电源的新型电容器和超大电容。要求电容量大、等效电阻ESR小、体积小等。功率因数校正。许多国家也在研究性价比较高的功率因数校正技术。低压大电流。微处理器性能的不断提高,低压大电流开关电源也随之发展起来。例如电压低达1.11.8V,而电流高达50100A的开关电源。另外,还有采用波形交错技术,探寻省略滤波电容的可行性等。开关电源还朝着模块化方向发展。1.3 本课题的主要研究内容随着电子技术的高速发展,各种各样的电子设备应运而生,然而这么多电子设备,精密仪器的背后都需要有个稳定
5、输出的电源做支持。从原有的线性稳压电源到现在的开关稳压电源,不论从体积、功耗、性能上,都有质的飞跃,并且开关电源更容易实现多路不对称输出。这使得各种电子设备不同功能的需要都可以得到满足。本课题主要研究的是输出7路隔离电压的反激式开关电源,研究内容如下:本设计的开关电源是采用全控型电力电子器件MOSFET作为开关,利用控制开关器件的占空比来调整并稳定输出电压,主电路采用多路输出单端反激式变换器结构,采用UC3844控制芯片实现电压电流双闭环控制,采用PC817、TL431等专用芯片以及其他的电路元件相配合,作为反馈环节,使设计出的开关电源具有电压自我调节功能。开关工作频率为50kHz,输出7路隔
6、离的电压。设计流程:1熟悉UC3844、PC817、TL431的结构原理及作用。2多绕组高频变压器的设计。3输出级设计。4MOSFET开关管的选择及其驱动电路设计。5由PC817、TL431组成的反馈环路的设计。6输入整流滤波电路和输入启动电路的设计。第二章 开关电源的原理2.1 开关电源的基本原理在线性电源中,功率晶体管工作在线性模式,线性电源的稳压是以牺牲调整管上的耐压来维持的,因此调整管的功耗成为了线性稳压电源的主要损耗。与线性稳压电源不同的是,开关电源的功率开关管工作在开关(导通与截至)状态。在这两种状态中,加在功率开关管上的伏安乘积总是很小(在导通时,电压低,电流大;关断时,电压高,
7、电流小)。功率器件上的伏安乘积就是功率开关管上所产生的损耗。不同于线性稳压电源,开关电源更为有效的电压控制方式是PWM(Pulse Width Modulation)控制方式,就是对脉冲的宽度进行调制的技术,即通过对一系列脉冲的宽度进行调制,然后通过滤波电路来等效的获得所需要的波形(含形状和幅值)。而开关电源多为对等幅脉冲进行控制,脉冲的占空比是开关电源的控制器来调节的。当输入电压被斩成交流方波,其输出幅值就可以通过高频变压器来升高或降低。通过改变高频变压器的二次绕组个数就可以改变电压的输出路数。最后这些交流脉冲波形经过整流滤波后就得到所需的直流输出电压。开关电源的基本工作工程:1、交流输入经
8、整流滤波变成直流;2、控制器输出高频PWM信号控制开关管,将直流电压斩波成高频脉冲电压加到高频变压器初级绕组上;3、高频变压器次级绕组感应出高频电压,经整流滤波供给负载;4、反馈环节从一部分输出电压采样得到误差电压,经误差放大后输入到控制器,控制占空比,以达到稳定输出电压的目的。32.2 开关电源的组成图2-1 开关电源的结构框图AC/DC转换电路是整流滤波电路。DC/DC转换器是开关电源中最重要的组成部分,有以下几种基本类型:buck型、boost型、buck-boost型、正激式、反激式、推挽式、半桥式和全桥式转换器。因设计需求,本设计在主电路拓扑上采用单端反激式。下面就对这一结构主电路进
9、行讨论分析。32.3 单端反激式拓扑分析 工作原理图2-2 单端反激式变换器拓扑结构图中变压器的初级绕组与次级绕组同名端相反,为输入直流电压,开关S为功率开关管,C为输出滤波电容,R为负载,为初级绕组电流,为次级绕组电流;和为输出电压和电流,参考方向如图中所示。单端反激式变换器又称电感储能式变换器,其变压器兼有储能、变压、隔离三重作用。所谓单端,指变压器磁芯仅工作在其磁滞回线的一侧。当功率开关管S导通时,直流输入电压加在初级绕组上,在变压器初级电感线圈中储存能量,由于次级绕组感应电压为上负下正,使二极管D反偏截止,次级绕组中无电流,此时电能转化为磁能存储在初级电感中。当S截止时,初级感应电压极
10、性反向,使次级绕组感应电压极性反转,二极管D导通,储存在变压器中的能量传递给输出电容C,同时给负载供电,磁能转化为电能释放出来。当开关管重新导通时,负载电流由电容C来提供,同时变压器初级绕组重新储能,如此反复。从以上电路分析可以看出,S导通时,次级绕组无电流;S截止时,次级绕组有电流,这就是“反激”的含义。根据次级绕组放电时间的不同,单端反激式变换器分为3种工作模式:不连续工作模式(DCM)、连续工作模式(CCM)和临界工作模式。 基本关系式1共同关系式开关管S导通期间,流过初级绕组Np的电流线性增长,其增量为式中T为开关周期,D为占空比。开关管S截止期间,流过次级绕组Ns的电流线性减小,设电
11、流减小的时间是,则流过Ns的电流增量为开关管S截止期间,Np上感应电压与电源电压一起加在开关管S的DS级上,DS级承受的电压为2连续工作模式如果电流连续,输出电压的表达式为3断续工作模式S导通期间,变压器初级绕组储存的能量,所以电源输入功率为如果电流断续,S导通时起始电流为0,则,假设电路没有损耗,输入功率应与输出功率相等,设输出负载电阻为,则有从而可以得到断续模式输出电压的表达式为由式(2-7)可知,在断续模式下,输出电压与输入电压和导通时间成正比,与负载电阻的平方根成正比。因此,断续模式下负载不能开路。4第三章 系统设计3.1 技术指标本课题是针对现代电子设备对供电电源的需求,以220V市
12、电为能源供应,经整流滤波、高频变压器、再经过输出整流滤波,得到电子设备所需的5V、12V、+24V等电压。本课题设计的电源主电路拓扑采用单端反激式变换器结构,采用UC3844作为PWM主控IC,以实现电压和电流的双闭环控制,从而提高负载调整率,电压调整率,以达到电子设备对电源电压稳定性的要求,本电源开关频率设定在50kHz,同时输出7路相互隔离的电压。技术指标如下:1输入:AC185250V,50/60Hz2输出:5V/0.5A(4路),12V/1A,+24V/1A3开关频率:50kHz4效率:大于80%5输出文波:最大100mV(峰峰值)6输出精度:5V,12V:最大5%24V:最大10%7
13、最大占空比:45%3.2 黑箱设计1总输出功率:=58W2估算输入功率:=72.5W3直流输入电压:=V=V4平均输入电流:a最大平均输入电流:=0.28Ab最小平均输入电流:=0.21A5估算峰值电流:=5.5=1.22A6散热:根据MOSFET反激式变换器经验方法:损耗的35%是由MOSFET产生的,损耗的60%是由整流部分产生的,5%是由其他部分产生的。 效率80%时的损耗为14.5W。aMOSFET:=6.7Wb整流部分:=0.375W =1.8W =3.6W3.3 开关电源电路图设计的完整开关电源电路图如下:图3-1 本设计开关电源电路图3.4 关键元器件的选择与设计 控制器芯片UC
14、3844UC3844 PWM控制IC是高性能频率固定的电流型PWM控制器,它为实际设计提供了一种电路简单、外围元件少、带负载能力强而又经济的解决方案。这种控制IC的特点是:有一个可微调的振荡器,用来精确地控制占空比;有一个经过高温补偿的基准电压;一个高增益误差放大器和一个电流感应比较器;一个适用于功率MOSFET的图腾柱大电流推挽输出以及过压过流保护功能。图3-2 UC3844的引脚图该芯片虽然只有8个管脚,但是却有两个闭环控制回路,一个为内部误差放大器所构成的电压闭环控制回路,它将输出电压反馈到第2管脚,同2.5V基准电压比较,形成误差电压。另一个为内部电流感应比较器所构成的电流闭环控制回路
15、,变压器初级绕组中的电流在反馈电阻Rs上产生的压降,通过第3脚,与误差电压进行比较,调节PWM波的占空比。这两个控制回路都是在固定频率下工作的。1脚为补偿端,该管脚为误差放大器的输出,外接RC网络对误差放大器的频率响应进行补偿。2脚为电压反馈端,取样电压加在误差放大器的反相输入端,与2.5V的基准电压进行比较,产生误差电压。3脚为电流检测输入脚,外接电流检测电阻,将流过初级绕组上的电流实时反馈到控制器,当3脚电压等于或高于1V时,电流检测比较器输出高电平,复位PWM 锁存器,从而关闭输出脉冲,起到过流保护作用。4脚外接定时RC网络,用以确定振荡器的工作频率,其频率通过式确定。5脚是地,是控制电
16、路和电源的公共地。6脚为输出端,采用图腾柱式输出,最大峰值电流为1A,能直接驱动功率MOSFET的栅极。7脚为集成电路的正电源,其开启电压为16V,关闭阀值为10V。一旦芯片开始工作,该芯片就能在10-16V之间波动的电源供电条件下正常工作,6V的差值电压可有效地防止电路在给定工作电压附近振荡。当开关电源通电瞬间,高压直流电通过一个大阻值的电阻降压供给UC3844,当7脚的电压大于16V时,芯片立即启动,此时启动电流小于1mA,此时无输出,6脚输出正脉冲,使变压器也启动工作,变压器一路输出绕组专门给UC3844供电,以保持芯片继续正常工作,此时的工作电流约为15mA。在第7脚设有一个 34V的
17、齐纳管稳压管,用于保证其内部电路绝对工作在34V以下,防止高压可能带来的损坏。8脚为基准电压输出,产生精确的+5V基准电压,并具有一定的带载能力,带载能力可达50mA。通常我们通过测量该脚是否有稳定的+5V输出来判断该IC是否正常工作。UC3844的最大的优点就是外围元件少,外电路装配简单,且成本低,适用于20100W小功率开关电源的驱动电路设计。3.4.1.2 UC3844的特点UC3844具有如下特点:(1)电压调整率(抗电压波动能力)非常好(2)有很好的负载调整率(3)频响特性好,稳定幅度大(4)过流限制特性好(5)具有过压保护和欠压锁定功能。(6)UC3844控制的开关电源工作占空比D
18、<50%5 线性光耦合器PC817光电耦合器是以光为媒介来传播电信号的器件。通常是把发光器(发光二极管LED)和受光器(光敏晶体管)封装在同一管壳内如图3-4。当输入端加电信号时,发光器(发光二极管)发出强弱光线,照射在受光器(光敏晶体管)上,受光器接受强弱不同的光线后导通程度也不同,产生不同强度的电流从输出端输出,实现了“电-光-电”的转换。普通光电耦只能传输开关信号,不能传输模拟信号。线性光电耦是一种与普通光耦不同的新型光电转换器件,它可以传输模拟电压或电流信号,输入信号的强弱不同,发光器产生相应强弱的光信号,从而使受光器的导通程度也随光信号强弱的不同而输出的电压或电流强度也随之不同
19、并具有线性的对应关系。 PC817属于线性光电耦合器,可以传输模拟信号。7PC817内部结构如图3-4所示:图3-4 PC817内部框图图3-5为PC817集电极发射极电压V 与发光二极管正向电流的关系:3.4.3 可调精密并联稳压器TL431本课题所设计的基准电压和反馈电路采用三端稳压器TL431构成。在反馈电路中用TL431与输出采样电压进行比较,再通过光电耦合器PC817把电压反馈到UC3844的电压反馈端。TL431是2.536V可调式精密并联稳压器。其价格低廉,可广泛应用于精密线性稳压电源和单片精密开关电源中。它可以输出2.536V连续可调电压,工作电流范围宽达0.1100mA,动态
20、电阻典型值为0.22欧,输出杂波低。TL431的电路图形符号和基本接线如图3-6所示。图3-6 TL431的电气符号图和等效电路图图中,A为阳极,需接地使用;K为阴极,需经限流电阻接正电源;是输出电压的设定端,根据 ,外接电阻分压器选择不同的和的值可以得到从2.536V范围内连续输出电压。需要注意的是,在选择电阻时必须保证阴极电流要大于1mA,以保证TL431正常工作。6 高频变压器的设计.1 高频变压器作用高频变压器是开关电源的重要组成部件,它不仅是能量转换和传输的主要器件,而且能够实现输入与输出的电器隔离。其性能的好坏不仅影响变压器本身的效率和发热量,而且还会对开关电源的整体性能和可靠性产
21、生极大的影响。因此,全面分析设计变压器的材料、损耗、磁通密度、制造工艺就显得尤为重要。当控制IC输出一个导通脉冲到MOSFET的栅极时,MOSFET饱和导通,变压器初级绕组中电流逐渐增加,而此时初级绕组产生的感应电压使输出回路的整流二极管截止,次级绕组中无电流,能量以磁能的形式存储在初级绕组中。当截止脉冲到来时,根据楞次定律,次级产生与之前方向相反的感应电压,使整流二极管立即导通,次级线圈产生的感应电压向输出滤波电容充电,即把能量从初级绕组传递到次级的输出电容中,并给负载供电。变压器周而复始的经历上述能量的存储转换过程,从而实现了能量的传输。.2 高频变压器的设计1、选择变压器的磁芯及材料用于
22、开关电源的高频变压器磁芯都是铁磁合金,实际应用的磁芯材料有铁氧体、超微晶合金等。选择磁芯时最重要的考虑因素是在工作频率点处的损耗和磁密,因此正确的选择高频变压器磁芯,对变压器性能发挥至关重要。考虑到价格的因素,本设计选用国产 NCDLPZ材料的铁氧体磁芯。确定磁芯规格可以根据制造厂提供的图表,按输出功率来选择磁芯,例如下表:输出功率/WMPP环形磁芯直径/(in/mm)E-E、E-L等磁芯(每边)/(in/mm)<50.65(16)0.5(11)<250.80(20)1.1(30)<501.1(30)1.4(35)<1001.5(38)1.8(47)<2502.0
23、(51)2.4(60)表3-1 输出功率与大致的磁芯尺寸的关系58W可选用每边约35mm的EE35/35/10材料为PC30磁芯,磁芯有效截面积=100,=188, 磁芯重量W=40.6g。1.计算初级临界电感2.计算磁芯气隙其中,为磁芯有效截面积,单位为最大工作磁通密度,单位G为最小初级电感,单位H3.计算一次绕组最大匝数查表可知,EE35/35/10磁芯的=120nH/N2为方便次级绕组设计,本设计取=111砸4.计算二次主绕组匝数VD采用肖特基二极管,典型值为0.6V5.计算其他次级绕组匝数DC12V绕组:6.75取7匝DC+24V绕组:13.2取13匝6.检测输出电压误差电压误差均符合
24、设计要求7.计算和选取绕组导线规格式中: 为相应绕组直径,单位为;为相应绕组额定电流,单位为A;为电流密度,单位为A/,AWG标准J=1.98A/;初级绕组最大电流有效值为:初级绕组线径:=0.55mmDC5V绕组:=0.568mmDC12V绕组:=0.803mmDC+24V绕组:= 0.803mm初级绕组:#23 AWG,单股DC5V绕组:#23AWG,2股DC12V和DC+24V绕组:#22AWG,2股 输出级的设计由于本课题设计的是离线式开关电源,并且考虑成本原因,采用无源输出级。无源输出级就是基于传统的无源半导体器件设计的。它在电源效率为72%84%之间是可以接受的。输出整流电路原理图
25、如图所示 图3-7 输出整流电路输出整流管宜采用正向压降小的肖特基二极管,这样可以减少损耗,其反向恢复时间短,不仅可以降低损耗,并且可以减小噪声干扰。对电源效率的提高也是很有帮助的。对于反激式拓扑结构:DC5V:=15V ,采用2GWJ42DC12V:=35V,采用2GWJ42DC+24V:=66V,采用HRP34第一级滤波电容的选择由下式确定:其中: 是输出端的额定电流,单位为A;是在高输入电压和轻载下所估计的最小占空比(估计值为0.3是比较合适的);是最大的输出电压纹波峰峰值,单位为mV。第二级经LC滤波使不满足文波要求的电压再次滤波。通常滤波电感可以选择0.3H,输出滤波电容器不仅要考虑
26、输出纹波电压是否可以满足要求,还要考虑抑制负载电流的变化,在这里可以选择100F。16 功率MOSFET及其驱动电路设计功率MOSFET的主要作用是将直流输入电压斩波成PWM电压。为了完成此功能,功率MOSFET需要工作在导通与截止状态,这样可降低功率器件损耗。忽略变压器漏感尖峰电压,功率MOSFET的最小电压应力为:考虑到变压器漏感产生的尖峰电压,并留有裕量,取VDSS为800V或者1000V的管子,本设计中Ipk=1.22A选用800V/1.8A IRFBE20。图3-8 控制电路及MOSFET电路图UC3844的8脚的+5V基准电压经过给充电,再经过芯片内部电路放电,于是在第4脚就得到锯
27、齿波电压,其频率为开关频率、构成补偿网络,用于改善误差放大器的频率特性。为MOSFET的栅极驱动电阻,一般取1020,这里选用1514 电压反馈电路设计考虑到控制器的安全性,一般都采用光耦隔离反馈电压。为了减小光耦合器的漂移,二次侧需要一个误差放大器,本设计采用TL431构成误差放大器。对于多路输出的电源来讲,输出端的交叉调整性能是个不可忽视的问题。若只对一路输出进行反馈,则当未检测输出端负载变化时,被检测的输出端电压波动很小,但未检测的输出端电压的变化并不能完全通过变压器耦合到反馈端,因此不能对其有效调节,导致其他输出端电压波动较大。多路输出检测通常是把上臂检测电阻用多个并联电阻代替,分别接
28、到不同的输出端。每个输出端被检测的电流百分比,即表示了该输出端被调节的程度。图3-9 电压反馈电路由于本设计对5V电压要求较高,所以5V输出端被检测电流占60%,12V和24V各占20%。取R10为1%精度的电阻,其值为2.49,则实际检测电流为Is=2.5V/2.49=1.004mA。则取4.12 (3-9)取47.5 (3-10)取107 (3-11)取=470,TL431的=20mA,PC817的=3mA,则上的压降为由PC817芯片资料可知,其发光二极管的正向导通压降典型值为1.2V,则上的压降,又知流过的电流,因此的值为3.4.8 输入启动电路的设计电路图如下:图3-10 启动电路图
29、电源通过启动电阻给电容充电,当电压达到UC3844的启动电压门限值(+16V)时,UC3844开始工作并提供驱动脉冲,由6 端输出驱动开关管工作。随着UC3844的启动,的工作也就基本结束,7脚电压可以小于16V,余下的任务交给输出绕组Ns12V,由输出绕组Ns12V来为UC3844 供电,由于UC3844稳定工作后。由于输入电压超过了UC3844 的工作电压,为了避免意外,用稳压管限定UC3844 的输入电压,取的稳定电压为18V,可以选择IN4746稳压二极管。阻值的计算:稳压管IN4746的稳定电流为UC3844的启动电流小于1mA,按1mA计算,则3.4.9 输入整流滤波电路的设计对于
30、市电供电的开关稳压电源,输入整流滤波电路的设计是必须的,但是相对于其他电路部分,输入整流电路的设计相对简单,但其设计的好坏对于电源的可靠性和对电网的影响也有较大的影响。输入整流滤波电路通常由:EMI滤波器、浪涌电压电流抑制器、整流器和滤波电容组成。许多交流输入的场合有些电源还带有PFC功率因数校正电路,以减小电源对电网供电质量的影响。图3-11 输入整流滤波电路C1、C2为抑制串模干扰,其容值不需要很大,一般取0.010.47薄膜电容,这里取0.1/400V的薄膜电容。共模扼流圈L,对共模信号呈现很大的阻抗,他通常由线圈绕在高磁导率、低损耗的铁氧体磁环上制作完成的。其电感通常取几毫亨至十几微亨
31、,视额定电流而定。这里选择L值为8mH。C3、C4跨接在输出端接地,能有效抑制共模干扰。一般采用陶瓷电容,电容量在22004200pF之间。这里取3300pF。为了降低500kHz以下的传导噪声,一般VD1、VD3采用快恢复二极管,这里取FR156,VD2、VD4取1N4007.输入滤波电容C5的选取可以根据经验公式:在AC85265V输入时,一般(23)/W。这里取220/400V铝电解电容。 保护电路的设计系统的保护电路包括过电流保护、过电压保护、欠压锁定、尖峰冲击电压保护等。以下将就几种保护电路做个详细的介绍。1输入保护a一般在输入端加熔丝管,这里用2A的熔丝管较为合理。b负温度系数热敏
32、电阻NTCR。其特性为其阻值随温度升高而降低。它能有效减小电源接通瞬间,电流对电路的冲击。这里选择8-101NTCR,标称阻值为10,额定电流为1A。c压敏电阻VSR。其特点是,工作电压宽,耐冲击电流能力强,漏电流小,电阻温度系数低,价格低廉,体积小。压敏电阻对冲击电压有较好的钳位作用。这里选取MY31-270/3,标称值220V。2、过流保护过流保护电路主要通过检测上流过的电流并通过和滤波后,反馈回UC3844,与其内部的1V基准电压比较,使导通宽度变窄,输出电压下降,直至使UC3844停止工作,没有触发脉冲输出,使场效应管截止,达到保护MOSFET和电路的目的。短路现象消失后,电源自动恢复
33、正常工作。因为Ipk=1.22A,因此。3、MOSFET尖峰电压冲击保护由于场效应管在由饱和导通进入截止的瞬间,急剧变化的漏极电流会在高频变压器初级绕组上感应出反向电动势,加上变压器漏感产生的浪涌尖脉冲直接加在MOSFET漏极,其峰值可达到直流输入电压的数倍,它们与直流输入电压叠加,MOSFET很容易因此击穿。通常的做法是在MOSFET漏源级之间加二极管RC网络钳位或吸收尖峰电压。本设计中,和,共同组成了尖峰电压钳位电路。以,为例,其作用是通过给充电,把尖峰电压钳位在安全值以下,然后通过将吸收的浪涌尖峰电压以热量形式释放掉,从而保护了功率MOSFET。17183.5 电路工作过程总结1、电路的
34、启动过程交流市电经过整流电路得到的直流电压分成两路:一路经高频变压器初级绕组Np直接加到MOSFET的漏极;另一路经启动电阻向C8充电,为UC3844提供启动电压,加到控制芯片UC3844的第7脚,当的充电值达到16V时,控制芯片启动工作,此过程称为电源的“软启动”。为防止冲击电压对UC3844造成损坏,在其第7脚和地之间加入一个18V稳压管。其中,8脚产生的5V基准电压通过对进行充电,在第4脚上形成锯齿波电压信号,其频率就是电源的工作频率。锯齿波信号进入UC3844内部振荡器,产生频率固定的振荡信号,经脉宽调制和推挽式输出级放大后,在第6脚输出栅极驱动信号,使MOSFET导通,开关电源+12
35、V的输出绕组,由+12V输出电压给UC3844提供工作电压。212、开关电源储能过程当MOSFET导通以后,直流电压经高频变压器的初级绕组、MOSFET的漏极源极、电流检测电阻、地电流回路,在初级绕组上产生上正下负的感应电动势,根据同名端的定义,变压器次级绕组产生的感应电动势均为负,输出整流二极管均反偏截止,高频变压器将电能以磁能的形式储存在初级绕组之中,这样便完成了储能过程。3、开关电源释能过程当UC3844锁存器翻转,6管脚输出脉冲停止,MOSFET由导通变为截止。这时,变压器初级绕组产生的感应电压变为下正上负,次级绕组产生的感应电压为正向电压,输出整流二极管导通,初级绕组将存储的能量释放
36、,传递到次级绕组中,经整流滤波电路,得到需要的输出电压。在UC3844的控制下,周而复始的重复上述过程,实现能量的转换传输。4、开关电源稳压过程一路+5V、+12V、+24V输出电压经、分压后与TL431的基准电压值2.5V进行比较,与输出电压的变化产生误差电压,并通过光耦PC817把误差传递给UC3844,由UC3844控制MOSFET的占空比以实现稳压。当输出电压升高时,输出电压经分压电阻分压得到的采样电压也升高,流过PC817发光二极管的电流增大,发光二极管发光强度增大,光电三极管导通程度加深,集射极电压减小,UC3844的6脚输出驱动信号的占空比减小,于是输出电压下降,达到稳压的目的。
37、当开关电源输出的电压下降时,上述控制过程正好相反。17第四章 设计总结本课题设计了一个多路输出单端反激式开关电源,主要工作概括如下:了解了开关电源技术的发展现状,认识了目前广泛使用的几种拓扑类型,主要对反激式拓扑进行了分析研究。采用UC3844作为控制芯片,充分使用了UC3844电压电流双闭环反馈功能,实现了对输出电压保护与调节。由于UC3844的功能高度集成,其性能优良、管脚数量少、外围电路简单、价格低廉等优点,为本课题设计降低了难度。由UC3844构成的开关电源控制性能好,功能完善,可靠性高。详细介绍了高频变压器的设计流程,包括磁芯选择、匝数计算、导线选择等。电压采样及反馈电路由光电耦合器
38、PC817、三端可调稳压管TL431组成。这种拓扑结构外接元件少,负载调整率好,具有良好的稳压效果。并采用多路反馈,控制更加有效,可以适用于各种负载。本设计采用单个高频变压器完成7路电压输出,由于本设计是基于单端反激式变换器结构,因此电源的容量取决于高频变压器的性能。由于高频变压器的设计是比较困难的,因此可以采用多个变压器分担不同输出,将功率进行合理的分配。.本论文并没有对PCB板进行最终设计,也没有对功率因数进行校正,这些需要在进一步的工作中完成。参考文献1 蔡宣三,开关电源的发展轨迹,电子产品世界,2000,4:42432 徐九玲,谢运详,彭军,开关电源的新技术与发展前景,电气时代,200
39、3,6:52553 张占松,蔡宣三,开关电源的原理与设计,北京:电子工业出版社,1998,781124 杨荫福,段善旭,朝泽云,电力电子装置及系统,北京:清华大学出版社,2006,25435 ST Datasheet of high performance current mode PWM controller UC3842B/3B/4B/5B,March 1999:l156 AnonTL431,A,B SeriesMOTOROLA公司资料:TL431,A,B Series7 AnonHigh Density Mounting Type Photo couplerSHARP公司资料:PC817 Series.8 周志敏,周纪海,开关电源实用技术设计与应用,北京:人民邮电出版社,2005:4475099 李京民,王柏盛,开关电源中开关变压器的设计,河北煤炭建筑工程学院学报,1995,2:26
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《心脏康复培训》课件
- 小学一年级20以内加减法混合运算
- 小学五年级数学小数乘除法计算练习题 集
- 二年级上册21 雪孩子(教案)
- 2025年1月内蒙古自治区普通高等学校招生考试适应性测试(八省联考)历史试题
- 《新地产营销新机会》课件
- 混凝土路面施工协议书
- 口腔科护士的工作总结
- 育人为本点滴栽培班主任工作总结
- 浴室用品销售工作总结
- 2024年领导干部任前廉政知识考试测试题库及答案
- 中医辨证-八纲辨证(中医学课件)
- 冠脉介入进修汇报
- 蒋诗萌小品《谁杀死了周日》台词完整版
- 生涯发展展示
- 【家庭自制】 南北香肠配方及28种制作方法
- 厂房施工总结报告
- 先进物流理念主导和先进物流技术支撑下的日本现代物流
- 建筑小区生雨水排水系统管道的水力计算
- 公务员职务和级别工资档次套改及级别对应表
- 社会团体选举办法
评论
0/150
提交评论