版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中考数学二次函数压轴题基本题型xOyACBMN在平面直角坐标系中,二次函数的图象与x轴交于A(-3,0),B(1,0)两点,与y轴交于点C(1)求这个二次函数的关系解析式;长度型:(2)点M为直线AC上方抛物线上一动点,过M点作MNy轴交直线AC于点N, 当点M的坐标为多少时,线段MN有最大值,并求出其最大值; (3)点M为直线AC上方抛物线上一动点,过M点作MNy轴交直线AC于点N, 作MEAC于点E,当点M的坐标为多少时,MEN的周长有最大值,并求出其最大值; xOyACBMNE面积型:(4)点P是直线AC上方的抛物线上一动点,是否存在点P,使ACP的面积最大?若存在,求出点P的坐标;若不
2、存在,说明理由变式:点P是直线AC上方的抛物线上一动点,使ACP的面积为整数的点P有几个,并说明理由;xOyACBP(5)点Q是直线AC下方的抛物线上一动点,是否存在点Q,使?若存在,求出点Q的坐标;若不存在,说明理由xOyACB(6)点Q是直线AC下方的抛物线上一动点,是否存在点Q,使?若存在,求出点Q的坐标;若不存在,说明理由xOyACBxOyACB 变式:抛物线上是否存在点P,使,若存在,求出点P的坐标,若不存在,说明理由xOyACBxOyACB特殊三角形存在性:(7)在平面直角坐标系中,是否存在点Q,使BCQ是等腰直角三角形?若存在,求出点Q的坐标;若不存在,说明理由xOyACB(8)
3、在抛物线的对称轴上是否存在点Q使BCQ是等腰三角形?若存在,求出点Q的坐标;若不存在,说明理由;(等腰三角形:两圆一线)xOyACB xOyACB xOyACB(9)在抛物线的对称轴上是否存在点Q,使ACQ为直角三角形;若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACBxOyACB几何最值型:(10)在抛物线的对称轴上是否存在点Q,使BCQ的周长最小;若存在,求出点Q的坐标与周长最小值;若不存在,说明理由xOyACBxOyACB(11) 在抛物线的对称轴上是否存在点Q,最大;若存在,求出点Q的坐标;若不存在,说明理由;(12)若D为OC的中点,P是抛物线对称轴上一动点,Q是x
4、轴上一动点,当P、Q两点的坐标为多少时四边形CPQD的周长最小?并直接写出四边形CPQD周长的最小值;xOyACDPbQxOyACD相似存在性:(13)点Q是坐标轴上一动点,是否存在点Q,使以点B、O、Q为顶点的三角形与AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACB(14)点Q是抛物线上一动点,过点Q作QE垂直于x轴,垂足为E是否存在点Q,使以点B、Q、E为顶点的三角形与AOC相似?若存在,求出点Q的坐标;若不存在,说明理由;xOyACBxOyACB角度问题:(15)抛物线上是否存在的点Q,使QCA=45, 若存在,求出Q点的坐标;若不存在,说明理由; xOy
5、ACB(16)抛物线上是否存在的点Q,使QCA=OCB, 若存在,求出Q点的坐标;若不存在,说明理由;xOyACBxOyACB*变式:抛物线上是否存在的点Q,使QCA+OCB =45, 若存在,求出Q点的坐标;若不存在,说明理由;xOyACBxOyACBxOyACB(17)在抛物线的对称轴上是否存在点Q到直线BC的距离与到x轴的距离相等?若存在求出点Q,若不存在 请说明理由;(在抛物线的对称轴上是否存在点Q,使Q与x轴和直线BC都相切?)特殊四边形存在性问题:(18)点M为抛物线上一动点,过M点作MNy轴交直线AC于点N,当以O、C、M、N为顶点的四边形是平行四边形时,求出点M的坐标;若不存在
6、,说明理由; xOyACBMN xOyACB(19)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,说明理由; xOyACBxOyACB xOyACB (20)点Q是抛物线上一动点,点M为抛物线对称轴上一动点,当以A、C、M、Q为顶点的四边形是平行四边形?,求出点Q的坐标;xOyACB xOyACB xOyACB (21)Q为抛物线的对称轴上一动点,点P在坐标平面内,若以A、C、P、Q为顶点的四边形为矩形,求Q点的坐标;以A、C、P、Q为顶点的四边形能为正方形吗?若能,请直接写出此时Q点的坐标;(矩形存在性问题转化成直角三角形存在性问题)xOyACB xOyACB xOyACB(22)Q为抛物线上一动点,点P在坐标平面内,若四边形APCQ为菱形,求Q点的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年综合商业体售楼处动态沙盘供应协议版B版
- 2024年门店装修工程承包合同样本版B版
- 2024院内医疗废物焚烧处理设施改造合同3篇
- 2024年版药材种子种苗销售合同3篇
- 2022年运城学院公共课《C语言》科目期末试卷A(有答案)
- 2025年度瓷砖生产节能减排合同2篇
- 2025年度彩板房租赁与安装合同范本3篇
- 2024版居家育儿服务协议范本:育儿嫂条款一
- 河套学院《国际投资与信贷》2023-2024学年第一学期期末试卷
- 2025年度生态保护区拆迁补偿及生态补偿协议范本3篇
- 2022年外交学院辅导员招聘笔试题库及答案解析
- 磁致伸缩液位传感器KYDM-路线设置使用
- (完整版)建筑业10项新技术(2017年最新版)
- 收割机转让协议
- 中学历史教育中的德育状况调查问卷
- 煤矿煤业掘进工作面班组安全确认工作记录表 模板
- 第8期监理月报(江苏版)
- 建筑工程质量管理体系文件
- 乙丙橡胶电力电缆绝缘一步法硅烷交联工艺
- 中止施工安全监督申请书(范例)
- 世界各国标准钢号对照表
评论
0/150
提交评论