




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、热泵原理在自然界中, 水总由高处流向低处, 热量也总是从高温传向低温。 但人们可以用水泵把水从 低处提升到高处, 从而实现水的由低处向高处流动, 热泵同样可以把热量从低温传递到高温。 所以热泵实质上是一种热量提升装置, 热泵的作用是从周围环境中吸取热量, 并把它传递给 被加热的对象 (温度较高的物体) ,其工作原理与制冷机相同, 都是按照逆卡诺循环工作的, 所不同的只是工作温度范围不一样。一台压缩式热泵装置, 主要有蒸发器、 压缩机、 冷凝器和膨胀阀四部分组成, 通过让工质不 断完成蒸发(吸取环境中的热量)T压缩T冷凝(放出热量) T节流T再蒸发的热力循环过程,从而将环境里的热量转移到水中。热
2、泵在工作时,把环境介质中贮存的能量 QA 在蒸发器中加以吸收; 它本身消耗一部分能量, 即压缩机耗电 QB;通过工质循环系统在冷凝器中进行放热 QC, QC=QA+QB,由此可以看 出,热泵输出的能量为压缩机做的功 QB和热泵从环境中吸收的热量 QA;因此,采用热泵 技术可以节约大量的电能。热泵发展趋势从科学利用热能的角度来说, 使用电力、 燃气、燃油等高品位的能源, 来加热仅四五十度温 升的生活用热水是极不合算的,这样的加热过程即使是达到100%的效率,表面看是没有热能的损失,但实际上已经伴随着巨大的熵增损失,是一种极大的能源浪费。从热力学第二定律的意义上讲, 传热的温差越大, 能量的损失就
3、越大, 即热能除了有 “热量” 方面度量以外, 还有“品位 ”方面的度量, 人们应该尽可能使用较低品位的热能, 这才是科学 的和合理的。现有的热水器实质上都是能量转换装置, 它把电能、 燃料的化学能或太阳能转换为热能, 其 系统“效率”不可能超过 100 % ,例如燃气热水器,因为有高温废气的排放、不完全燃烧、 强制排烟及换热效率方面的损失,实际的制热系数仅在0.50.7 之间。在很久以前, 科学家就提出了热泵的工作原理, 为人类科学的使用低温热能指出了方向, 目 前热泵技术在世界上也已经有了许多方面的应用,国内的应用主要在冷热双效空调产品中, 即以室外空气为热源对室内空气进行加热, 以达到节
4、能的目的, 其系统致热系数已经能高达 4 倍。热泵的名称很形象的比喻它的原理: 即热泵不是热能的转换设备而是热量的搬运设备, 它是 一台 “泵”,这个泵所搬运的介质不是水、气或油,而是 “热”。也因为这样,它的 “效率”不受 能量转换效率( 100%为其极限)的制约。热泵制热的效率,受到逆向卡诺循环效率的制约,其理论上的最高效率为:(工作温度 +273.15 ) / 高、低温差,从这里可以看出,只要有效的降低工作温差,就可以提高制热效率。 例如高低工作温差在 20 度时,系统的理论制热系数就可以达到15 倍以上。制热四个过程原理(1)压缩过程蒸发后的运行工质被吸入压缩机, 通过压缩机的压缩功能
5、, 将工质压缩成高压高温气体, 使 其对于较低温度的自来水易于放热、液化。(2)冷凝过程 从压缩机排出的高压高温工质被常温的自来水吸收热量而变成的液态工质。(3)节流过程 把液化后的工质送入热泵主机蒸发器之前, 利用毛细管的压力差, 使工质在保温水箱的冷凝 器内冷凝降压,将它变成即使在低温下也易于蒸发的状态。(4)蒸发过程 液态工质从周围空气中吸收热量而不断蒸发汽化,被吸收热量后的空气变为“冷气 ”。热泵制热原理 热泵热水器是空调器的演变产品,在制冷系统中装上电磁四通阀(又称换向阀) ,通过四通 阀的切换方向,改变制冷剂的流动方向, 空调器就能制热。压缩机排出的高温高压蒸汽状 的制冷剂流向保温
6、水箱里的冷凝器, 将热量传给通过水箱的自来水, 然后通过毛细管节流降 压,在室外热泵主组的蒸发器中蒸发吸热, 用工质吸收室外空气中的热量。 热泵热水器就是 这样吸收室外空气中的热量, 向保温水箱内自来水传递, 它比单纯用电加热器制热更能省电、 快速、安全,且室外热能潜力无限大。热泵制热时, 如果热泵主机换热器的温度太低, 则冷凝水会在热泵主机换热器上结霜, 影响 制热效果, 此时必须进入化霜工况运行, 热泵主机换热器放热化霜, 等结霜化去后重新开始 制热。热泵的主要分类根据热泵所利用能源的不同,热泵可作如下分类:一、空气源热泵 以空气作为 “源体 ”,空气源热泵,通过冷媒作用,进行能量转移。目
7、前的产品主要是家用热 泵空调器、 商用单元式热泵空调机组和热泵冷热水机组。 热泵空调器已占到家用空调器销量 的 4050%,年产量为 400余万台。热泵冷热水机组自 90 年代初开始,在夏热冬冷地区得 到了广泛应用, 据不完全统计, 该地区部分城市中央空调冷热源采用热泵冷热水机组的已占 到 2030% ,而且应用范围继续扩大并有向此移动的趋势。二、水源热泵以地下水作为冷热 "源体 " ,在冬季利用热泵吸收其热量向建筑物供暖, 在夏季热泵将吸收到 的热量向其排放、 实现对建筑物供冷。 虽然目前空气能热泵机组在我国有着相当广泛的应用, 但它存在着热泵供热量随着室外气温的降低而减
8、少和结霜问题,而水源热泵克服了以上不 足,而且运行可靠性又高,近年来国内应用有逐渐扩大的趋势。三、地源热泵 地源热泵是以大地为热源对建筑进行空调的技术, 冬季通过热泵将大地中的低位热能提高对 建筑供暖, 同时蓄存冷量, 以备夏用; 夏季通过热泵将建筑物内的热量转移到地下对建筑进行降温,同时蓄存热量,以备冬用。由于其节能、环保、热稳定等特点,引起了世界各国的 重视。 欧美等发达国家地源热泵的利用已有几十年的历史, 特别是供热方面已积累了大量设 计、施工和运行方面的资料和数据。四、复合热泵 为了弥补单一热源热泵存在的局限性和充分利用低位能量,运用了各种复合热泵。如空气 - 空气热泵机组、空气 -水
9、热泵机组、水 -水热泵机组、水 -空气热泵机组、太阳 - 空气源热泵系 统、空气回热热泵、太阳 -水源热泵系统、热电水三联复合热泵、土壤 - 水源热泵系统等。1、太阳 - 空气热源热泵系统太阳 -空气热源热泵系统是在传统的空气热源热泵系统的基础上,利用太阳能热源而新开发 的系统。它可以制冷、供热、供生活热水,是一种利用自然能源、无污染、适用性广、效率 高的新型冷热源系统。2、土壤 - 水热泵系统土壤 -水热泵(下称土壤热泵)可利用低品位的土壤热能提供热水或向建筑物供暖。美国、 德国及瑞典等北欧国家, 已有上万台此类热泵装置在运行, 土壤热泵技术已趋成熟, 并迅速 地加以推广使用。目前正在制订土
10、壤热泵用于供暖的技术规范。3、太阳能 - 水源热泵空调系统太阳能水源热泵系统由三部分组成, 即太阳能集热系统、 水源热泵系统和热水供应系统。 其 系统是将建筑物的消防水池作为蓄水供应系统。 以解决太阳能的间歇性和不稳定性。 当环路 水温高于 35C时,水源热泵空调系统同消防水池断开,冷却塔投入运行,当环路水温在1535 C之间时,太阳能作为冷却塔停止运行,生活热水供应的热源收集的太阳能用来加热 生活用水;当环路水温低于15C时,环路与消防水池连通, 太阳能水源热泵空调系统吸收太 阳能。若仍有多余的太阳能时,可继续加热生活用水。热泵除上述四类以外, 还有喷射式热泵、 吸收式热泵、 工质变浓度容量
11、调节式热泵及以 CO2 为工质的热泵系统。国家标准地源热泵系统工程技术规范GB50366-2005设计要点解析中国建筑科学研究院空气调节研究所 邹瑜 徐伟 冯小梅摘要 :本文针对不同地源热泵系统的特点,结合规范条文,对 地源热泵系统设计特 点、方法及要点进行了深入分析,为地源热泵系统的设计提供指导。关键词: 地源热泵系统、设计要点、系统优化1 前言实施可持续发展能源战略已成为新时期我国能源发展的基本方针,可再生能源在建筑中 的应用是建筑节能工作的重要组成部分。 2006 年 1 月 1 日可再生能源法正式实施,地 源热泵系统作为可再生能源应用的主要途径之一, 同时也是最利于与太阳能供热系统相结
12、合 的系统形式, 近年来在国内得到了日益广泛的应用。 地源热泵系统利用浅层地热能资源进行 供热与空调, 具有良好的节能与环境效益, 但由于缺乏相应规范的约束, 地源热泵系统的推 广呈现出很大盲目性,许多项目在没有对当地资源状况进行充分评估的条件下就匆匆上马, 造成了地源热泵系统工作不正常, 为规范地源热泵系统的设计、 施工及验收, 确保地源热泵 系统安全可靠的运行,更好的发挥其节能效益,由中国建筑科学研究院主编,会同 13 个单 位共同编制了 地源热泵系统工程技术规范 (以下简称规范) 。该规范现已颁布, 并于 2006 年 1 月 1 日起实施。由于地源热泵系统的特殊性, 其设计方法是其关键
13、与难点, 也是业内人士普遍关注的问 题,同时也是国外热点课题,在新颁布的规范中首次对其设计方法提出了具体要求。为 了加深对规范条文的理解,本文对其部分要点内容进行解析。2 规范的适用范围及地源热泵系统的定义2.1 规范的适用范围 该规范适用于以岩土体、地下水、地表水为低温热源,以水或添加防冻剂的水溶液 为传热介质, 采用蒸气压缩热泵技术进行供热、 空调或加热生活热水的系统工程的设计、 施 工及验收。它包括以下两方面的含义:(1)“以水或添加防冻剂的水溶液为传热介质” ,意旨不适用于直接膨胀热泵系统,即直接 将蒸发器或冷凝器埋入地下的一种热泵系统。 该系统目前在北美地区别墅或小型商用建筑中 应用
14、,它优点是成孔直径小,效率高,也可避免使用防冻剂;但制冷剂泄漏危险性较大,仅 适于小规模应用。(2)“采用蒸气压缩热泵技术进行 , ”意旨不包括吸收式热泵。2.2 地源热泵系统的定义地源热泵系统根据地热能交换系统形式的不同, 分为地埋管地源热泵系统 (简称地埋管 系统)、地下水地源热泵系统 (简称地下水系统) 和地表水地源热泵系统 (简称地表水系统) 。 其中地埋管地源热泵系统,也称地耦合系统(closed-loop ground-coupled heat pumpsystem )或土壤源地源热泵系统, 考虑实际应用中人们的称呼习惯, 同时便于理解, 本规范 定义为地埋管地源热泵系统。 地表水
15、系统中的地表水是一个广义概念, 包括河流、 湖泊、 海 水、中水或达到国家排放标准的污水、 废水等。 只要是以岩土体、 地下水或地表水为低温热 源,由水源热泵机组、 地热能交换系统、 建筑物内系统组成的供热空调系统, 统称为地源热 泵系统。3 地源热泵系统的设计特点(1)地源热泵系统受低位热源条件的制约对地埋管系统, 除了要有足够埋管区域, 还要有比较适合的岩土体特性。 坚硬的岩土体 将增加施工难度及初投资,而松软岩土体的地质变形对地埋管换热器也会产生不利影 响。为此,工程勘察完成后,应对地埋管换热系统实施的可行性及经济性进行评估。 对地下水系统,首先要有持续水源的保证,同时还要具备可靠的回灌
16、能力。 规范中 强制规定 “地下水换热系统应根据水文地质勘察资料进行设计,并必须采取可靠回灌措施,确保置换冷量或热量后的地下水全部回灌到同一含水层, 不得对地下水资源造成浪 费及污染。系统投入运行后,应对抽水量、回灌量及其水质进行监测。 ” 对地表水系统, 设计前应对地表水系统运行对水环境的影响进行评估; 地表水换热系统 设计方案应根据水面用途, 地表水深度、 面积,地表水水质、 水位、 水温情况综合确定。(2)地源热泵系统受低位热源的影响很大低位热源的不定因素非常多, 不同的地区、 不同的气象条件, 甚至同一地区, 不同区域, 低位热源也会有很大差异, 这些因素都会对地源热泵系统设计带来影响
17、。 如地埋管系统, 岩 土体热物性对地埋管换热器的换热效果有很大影响,单位管长换热能力差别可达 3 倍或更 多。(3)设计相对复杂 低位热源换热系统是地源热泵系统特有的内容,也是地源热泵系统设计的关键和难点。 地下换热过程是一个复杂的非稳态过程, 影响因素众多, 计算过程复杂, 通常需要借助 专用软件才能实现; 地源热泵系统设计应考虑低位热源长期运行的稳定性。 方案设计时应对若干年后岩土体 的温度变化; 地下水水量、 温度的变化, 地表水体温度的变化进行预测, 根据预测结果 确定应采用的系统方案; 地源热泵系统与常规系统相比, 增加了低位热源换热部分的投资, 且投资比例较高, 为 了提高地源热
18、泵系统的综合效益, 或由于受客观条件限制, 低位热源不能满足供热或供 冷要求时, 通常采用混合式地源热泵系统, 即采用辅助冷热源与地源热泵系统相结合的 方式。确定辅助冷热源的过程, 也就是方案优化的过程, 无形中提高了方案设计的难度。4 地源热泵系统设计要点4.1 地埋管系统由于地埋管系统通过埋管换热方式将浅层地热能资源加以利用, 避免了对地下水资源的 依赖, 近年来得到了越来越广泛的应用。 但地埋管系统的设计方法一直没有明确规定, 通常 设计院将地埋管换热设计交给专业工程公司完成。 除少数有一定技术实力的公司, 引进了国 外软件, 可作一些分析外, 通常专业公司只是根据设计负荷, 按经验估算
19、确定埋管数量及埋 深,对动态负荷的影响缺乏分析, 对长期运行效果没有预测, 造成地埋管区域岩土体温度持续升高或降低,从而影响地埋管换热器的换热性能,降低地埋管换热系统的运行效率。因此,保证地埋管系统长期稳定运行是地埋管换热系统设计的首要问题,在保证需求的条件下,地埋管换热系统设计应尽可能降低初投资及运行费用。4.1.1负荷计算地埋管系统是否能够可靠运行取决于埋管区域岩土体温度是否能长期稳定。以一栋总建筑面积为2ioom的小型办公建筑为例,选取了四个具有代表性的地区:北 京、上海、沈阳和齐齐哈尔,利用TRNSYS莫拟地源热泵系统连续运行五年后,地埋管换热器出口即水源热泵机组进口的传热介质温度波动
20、情况,见表1 - 1,表1-2。表1- 1地埋管换热器出口传热介质夏季最高温度(C)变化地区吸、释热量比例12345北京1: 2.3633.1034.2535.2135.8636.40上海1 : 5.036.1738.3139.8941.1842.15沈阳1: 1.2827.9928.1128.1928.1928.18齐齐哈尔1: 0.6727.8826.5725.6625.0124.52注:表中数据引自中国建筑科学研究院研究报告地埋管地源热泵系统优化设计分析表1-2地埋管换热器出口传热介质冬季最低温度(C)变化地区吸、释热量比例12345北京1: 2.365.516.777.638.248.
21、72上海1 : 5.05.697.819.3310.4711.28沈阳1: 1.286.056.106.176.196.24齐齐哈尔1: 0.673.872.311.460.860.38注:表中数据引自中国建筑科学研究院研究报告地埋管地源热泵系统优化设计分析由表1 - 1、表1-2可见,由于吸、释热量不平衡,造成岩土体温度的持续升高或降低,导致进入水源热泵机组的传热介质温度变化很大,该温度的提高或降低,都会带来水源热泵机组性能系数的降低, 不仅影响地源热泵系统的供冷供热效果,也降低了地源热泵系统的整体节能性。为此规范明确规定,“地埋管换热系统设计应进行全年动态负荷计算,最小计算周期宜为1年。计
22、算周期内,地源热泵系统总释热量宜与其总吸热量相平衡。”4.1.2地埋管换热器设计地埋管换热器设计是地埋管系统设计特有的内容和核心。由于地埋管换热器换热效果不仅受岩土体导热性能及地下水流动情况等地质条件的影响,同时建筑物全年动态负荷、岩土体温度的变化、地埋管管材、地埋管形式及传热介质特性等因素都会影响地埋管换热器的换热效果。地埋管换热器有两种主要形式,即竖直地埋管换热器 (以下简称竖直埋管) 和水平地埋管换热器(以下简称水平埋管)。由于水平埋管占地面积较大,目前应用以竖直埋管居多。岩土体热物性的确定岩土体热物性的确定是竖直埋管设计的关键。规范中规定“地埋管换热器设计计算宜根据现场实测岩土体及回填
23、料热物性参数进行”。岩土体热物性可以通过现场测试,以扰动-响应方式获得,即在拟埋管区域安装同规格同深度的竖直埋管,通过水环路,将一定热量(扰动)加给竖直埋管,记录热响应数据。通过对这些数据的分析,获得测试区域岩土体的导热系数、扩散系数及温度。分析方法主要有 实际应用中,如有可能,应尽量采用两种以 上的方法同时分析,以提高分析的可靠性。岩土体热物性测试装置如图1所示:岩土体热物性测试要求测试时间为3648h,供热量应为 5080W/m流量应满足供回水 温差1122 C的需要,被测竖直埋管安装完 成后,根据导热系数不同,需要35d的等待期,此外对测量精度等也有具体要求。【11目前测试设备有两种,一
24、种是小型便携 式,一种是大型车载系统,后者可以提供较 大能量加热系统,最新设备还可以提供冷冻 水测试冬季运行工况,具有更好精度及可靠 性。3种,即线源理论、柱源理论及数值算法。MMTC.R TMK WITHTOFig, 15 Thrrmiil Properties Tesi Apparatus图1岩土体热物性测试装置竖直埋管地下传热计算地下传热模型基本是建立在线源理论或柱源理论基础上。1954年Ingersoll 和Zobel提出将柱源传热方程作为计算埋管换热器的合适方法,1985年Kavanaugh考虑U型排列和逐时热流变化对该方法进行了改进。实际工程设计中很少使用这种乏味的计算,20世纪8
25、0年代人们更倾向于根据经验进行设计。80年代末,瑞典开发出一套计算结果可靠且使用简单的软件,其数值模型采用的是 Eskilson (1987)提出的方法,该方法结合解析与数值模拟技术,确定钻孔周围的温度分布,在一定初始及边界条件下,对同一土质内单一钻孔建立瞬时有限差分方程,进行二维数值计算获得单孔周围的温度分布。通过对单孔温度场的附加,得到整个埋管区域相应的温度情况。为便于计算,将埋管区域的温度响应转换成一系列无因次温度响应系数,这些系数被称为 g-functions 。通过g-functions可以计算一个时间步长的阶梯热输入引起的埋管温度的变 化,有了 g-functions ,任意释热源
26、或吸热源影响都可转化成一系列阶梯热脉冲进行计算。1999年Yavuzturk和Spitler对Eskilson的g-functions 进行了改进,使该方法适用于短时间 热脉冲。1984年Kavan augh使用圆柱形源项处理,利用稳态方法和有效热阻方法近似模拟逐时吸 热与释热变化过程。规范中附录B,采用类似方法,给出了竖直地埋管换热器的设计计算 方法,供设计选用。水平埋管由于占地问题, 大多城市住宅或公建均很难采用。 由于应用较少, 国内外 对其换热机理研究也很少, 目前主要是根据经验数值进行估算。 2003年ASHRA手册给出了一 些推荐数据,供设计选用。主流地埋管设计软件基本上均包括水平
27、埋管的计算。4.1.3 设计软件通常地埋管设计计算是由软件完成的。 一方面是因为地下换热过程的复杂性, 为尽可能 节约埋管费用, 需要对埋管数量作准确计算; 另一方面地埋管设计需要预测随建筑负荷的变 化埋管换热器逐时热响应情况及岩土体长期温度变换情况。 加拿大国家标准 (CAN/CSA-C448.1)中对地埋管系统设计软件明确提出了以下要求:1 能计算或输入建筑物全年动态负荷;2 能计算当地岩土体平均温度及地表温度波幅;3 能模拟岩土体与换热管间的热传递及岩土体长期储热效果;4 能计算岩土体、传热介质及换热管的热物性;5 能对所设计系统的地埋管换热器的结构进行模拟,(如钻孔直径、换热器类型、灌
28、浆情况等) 。为此,规范中规定“地埋管设计宜采用专用软件进行。 ”判断软件复杂程度的标准有两个: 一是在满足埋管换热器设计要求的前提下, 用户输入 最少,计算时间最短;二是要求能模拟预测随建筑负荷变化,埋管换热器逐时热响应情况。目前,在国际上比较认可的有建立在g-fu nctio ns算法基础上瑞典隆德 Lund大学开发的EED§序,美国威斯康星 Wisconsin-Madison 大学Solar Energy实验室(SEL)开发的TRNSYS 程序,美国俄克拉荷马州Oklahoma大学开发的GLHEPR程序。此外还有加拿大 NR(开发的GS200Q以及建立在利用稳态方法和有效热阻方
29、法近似模拟基础上的软件GchpCalc等。4.2 地下水系统地下水系统是目前地源热泵系统应用最广的一种形式, 据不完全统计目前国内地下水项 目已近 300 个。对于较大系统, 地下水系统的投资远低于地埋管系统, 这也是该系统得以广 泛应用的主要原因。(1)热源井设计必须保证持续出水量需求及长期可靠回灌不得对地下水资源造成浪费和污染, 是地下水系统应用的前提。 地下水属于一种地质资 源,如无可靠的回灌,不仅造成水资源的浪费,同时地下水大量开采还会引起的地面沉降、 地裂缝、 地面塌陷等地质问题。 在国内的实际使用过程中, 由于地质及成井工艺的问题, 回 灌堵塞问题时有发生。 堵塞原因与热源井设计及
30、施工工艺密切相关, 为此规范 明确要求 “热源井的设计单位应具有水文地质勘察资质” ;设计时热源井井口应严格封闭并采取减少 空气侵入的措施也是保障可靠回灌的必要措施。(2)水质处理 水质处理是地下水系统的另一关键。地下水水质复杂,有害成分有:铁、锰、钙、镁、 二氧化碳、 溶解氧、氯离子、酸碱度等。 为保证系统正常运行, 通常根据地下水的水质不同, 采用相应的处理措施, 主要包括除砂、 除铁等。 为了保证水源热泵机组的正常运行, 规范 要求“地下水换热系统应根据水源水质条件采用直接或间接系统。 ”(3)地下水流量控制抽水泵功耗过高是目前地下水系统运行存在的普遍问题。 在对国内部分地下水系统的调
31、查时发现, 大多地下水系统没有调节措施, 长期定流量运行, 只有少数系统采用了台数控制。 据相关资料介绍,在不良的设计中,井水泵的功耗可以占总能耗的25或更多,使系统整体性能系数降低。根据负荷需求调节地下水流量,具有很大节能潜力。 规范中也建议“水系统宜采用 变流量设计” 。常用抽水泵控制方法有: 设置双限温度的双位控制、 变速控制和多井调节控 制。在设计时应根据抽水井数、系统形式和初投资综合选用适合的控制方式。北京市海淀区对水源热泵回灌下游水质跟踪检测三年多,未发现有污染和异常。欧洲、北美等地,已使用 2030年。只要严格控制凿井深度在浅表地层,严格禁止深入饮用水层 以避免对饮用水的层间交叉
32、污染, 同时在设计、 施工上严格把关,真正做到可靠回灌, 地下 水系统不会对地下水资源造成浪费和污染。4.3 地表水系统地表水系统分开式和闭式两种,开式系统类似于地下水系统,闭式系统类似于地埋管系 统。但是地表水体的热特性与地下水或地埋管系统有很大不同。与地埋管系统相比, 地表水系统的优势是没有钻孔或挖掘费用, 投资相对低; 缺点是设 在公共水体中的换热管有被损害的危险, 而且如果水体小或浅, 水体温度随空气温度变化较 大。(1)设计前应评估系统运行对水环境的影响 预测地表水系统长期运行对水体温度的影响,避免对水体生态环境产生影响。确定 换热盘管敷设位置及方式时,应考虑对行船等水面用途的影响。
33、(2)掌握地表水的水温动态变化规律是闭式系统设计的前提。地表水体的热传导主要有 三种形式,一是太阳辐射热,二是与周围空气间的对流换热,三是与岩土体间的热 传导。由于很难获得水体温度的实测数据,通常水体温度是根据室外空气温度,通 过软件模拟计算获得。(3)与地埋管系统一样,闭式地表水系统设计也是借助软件进行。(4) 利用TRNSYS1立地表水换热模型,模拟冬夏吸释热量不平衡时水体温度的变化。对地表水体进行10年运行期的换热模拟发现每年的温度变化基本一致。说明地表水体与外界环境换热量相对较大,一般可以消除冬夏吸释热量不平衡对水体温度的影响。(5)与地下水系统相类似,地表水系统同样面临水质处理的问题
34、。就海水源系统来说, 该问题更加突出。我国滨临渤海、黄海、东海、南海,有着很长的海岸线,海水作 为热容量最大的水体,理应成为地表水系统的首选低位热源。但海水对设备的腐蚀 性成为海水源热泵发展的一个瓶颈。为此规范中特别对海水源系统作了如下规 定“当地表水体为海水时,与海水接触的所有设备、部件及管道应具有防腐、防生物附着的能力;与海水连通的所有设备、部件及管道应具有过滤、清理的功能。”4.4建筑物内系统(1) 选用适宜地源热泵系统的水源热泵机组国家现行标准水源热泵机组GB/T19409中,对不同地源热泵系统,相应水源热泵机组正常工作的冷(热)源温度范围也是不同的,如表2所示,设计时应正确选用。表2
35、水源热泵机组正常工作的冷(热)源温度范围系统形式正常工作的冷(热)源温度范围水环热泵系统2040C(制冷)1530C(制热)地下水热泵系统1025C(制冷)1025C(制热)地埋管热泵系统1040C(制冷)525C(制热)(2) 水源热泵机组及末端设备应按实际运行参数选型;不同地区岩土体、地下水或地表水水温差别较大,设计时应按实际水温参数进行设备 选型。进入机组温度不同, 机组COP相差很大;末端设备选择时应适合水源热泵机组供、回水温度的特点,保证地源热泵系统的应用效果,提高系统节能率。4.5地源热泵系统优化(1) 辅助冷热源优化配置带辅助冷热源的混合式系统,由于它可有效减少埋管数量或地下(表)水流量或地表水换热盘管的数量,同时也是保障地埋管系统吸释热量平衡的主要手段,已成为地源热泵系统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 马工学在跨国公司中的应用试题及答案
- 教师资格考试应试内容试题及答案
- 2025-2030中国高级定制时装行业市场深度调研及市场供需与投资价值研究报告
- 2025-2030中国高粘度沥青行业市场深度分析及发展趋势与投资研究报告
- 马工学的电子商务策略试题及答案
- 2025-2030中国高效减水剂行业竞争态势分析及投资前景深度调查报告
- 2025-2030中国高压紫外光固化系统行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030中国高压反应釜行业市场发展趋势与前景展望战略研究报告
- 营销数据追踪工具使用试题及答案
- 2025-2030中国马来酸二丁酯(DBM)市场深度调查与前景趋势研究研究报告
- DL-T-302.1-2011火力发电厂设备维修分析技术导则第1部分:可靠性维修分析
- 运动性病症(课堂课件)
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
- 建筑施工人员的职业道德培训计划
- 《养成学习习惯》ppt课件完整版
- 年产10万吨聚氯乙烯生产工艺设计毕业设计
- 高中18岁成人仪式主题活动设计
- 《珠穆琅玛峰》课件
- 代码生成器的需求分析报告
- 药学概论(全套课件355P)
- 2023年-2024年电子物证专业考试复习题库(含答案)
评论
0/150
提交评论