版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、.1.2.2 同角三角函数的基本关系(名师:卓忠越)一、教学目标(一)核心素养通过教学,使学生学习运用观察、类比、数形结合、联想、猜测、检验等合情推理方法,提高学生运算能力和逻辑推理能力.(二)学习目标1牢固掌握同角三角函数关系式,并能灵活解题,提高学生分析、解决三角函数的思维能力;2探究同角三角函数关系式时,体会数形结合的思想;已知一个角的三角函数值,求这个角的其他三角函数值时,进一步树立分类思想;解题时,注重化归的思想,将新题目化归到已经掌握的知识点上;3牢固掌握同角三角函数的关系式,并能灵活运用于解题,提高分析、解决三角函数的思维能力;4灵活运用同角三角函数关系式的不同变形,提高三角恒等
2、变形的能力.(三)学习重点1理解并掌握同角三角函数关系式;2熟练掌握已知一个角的三角函数值求其他三角函数值的方法.(四)学习难点1已知某角的一个三角函数值,求其余的各三角函数值时符号的确定;2掌握同角三角函数的关系式,并能灵活运用于解题,提高分析、解决三角函数的思维能力.二、教学设计(一)课前设计1预习任务(1)熟记,五个特殊角的三角函数值(2)阅读教材P18P202预习自测(1)已知,且为第三象限角,求、的值【知识点】两组关系式的基本应用及三角函数值符号判定【解题过程】在第三象限 由得:由得:【思路点拨】利用两组三角函数公式和三角函数符号判定,代入解方程求解.【答案】,(2)化简:(1);
3、(2)【知识点】两组关系式的基本应用【解题过程】(1)(2)【思路点拨】(1)“切化弦”,统一函数名称从而实现化简的目的;(2)利用进行“1”的代换,统一分子分母为齐次式.【答案】(1);(2)1(3)求证:(1)(2)【知识点】两组关系式的基本应用【解题过程】(1)法一:左边=右边法二:右边=左边(2)左边=右边【思路点拨】恒等式证明遵循“化繁为简”的基本准则,即可从左化到右,也可从右化到左,或左右都往中间化得到相同的结果.【答案】见解题过程 (二)课堂设计1知识回顾(1)任意角的三角函数的定义(2)任意角的三角函数值的符号法则(3)初中所学的同角锐角三角函数的基本关系2问题探究探究一 结合
4、任意角的三角函数的定义,探究同角三角函数的基本关系活动 类比初中所学知识,猜想同角三角函数的基本关系回顾初中学习锐角三角函数的相关知识,在RtACB中,C=,三边长分别为,锐角A的三角函数的定义是什么.锐角A的这三个三角函数之间有什么关系呢.;以上同角三角函数关系对任意角仍成立吗.【设计意图】从已有的知识出发,类比探究知识的延展,得到合理的猜想,为发现新知奠定基础,体会由特殊到一般的数学思想.活动 回归定义,证明猜想,得到结论你能根据任意角的三角函数定义证明以上同角三角函数关系吗.也就是说,同一个角的正弦、余弦的平方和等于1,商等于角的正切.【设计意图】运用定义给予严格证明,肯定猜想的正确性,
5、是解决数学问题的常用方法.活动 架构迁移,熟悉公式结构和使用条件为了让学生及时熟悉公式,要求学生完成以下的课堂练习:(1)_;(2)_;(3)_;(4)_学生交流、讨论,最终在教师的引导下得到上述两个公式中应该注意的问题:注意“同角”指相同的角,例如:、;注意这些关系式都是对于使它们有意义的角而言的,如中,且需有意义等.【设计意图】通过练习,感知并理解同角的意义和公式的使用条件,培养严谨的数学思维习惯.探究二 同角三角公式的灵活运用活动 探究两个公式的等价变形式及应用由等价变形式,已知余弦值可以求正弦值;由等价变形式,已知正弦值可以求余弦值.但比如: ,此时,、的符号受所在象限的限制,不是无条
6、件的.例1.已知,其中在第四象限,求的值.【知识点】两组关系式的基本应用及三角函数值符号判定【数学思想】方程的思想【解题过程】第一步:定号在第四象限 第二步:定值由得:由得:【思路点拨】熟记公式,代入解方程求解.【答案】同类训练1:已知,求的值.【知识点】两组关系式的基本应用及三角函数值符号判定【数学思想】方程的思想和分类讨论思想【解题过程】第一步:定象限在第一或第二象限 第二步:定号、定值(1)当在第一象限时,由得:由得:(2)当在第二象限时,【思路点拨】涉及开方运算,符号判断取决于角所在象限.当角所在象限不确定时,需逐一分情况讨论.【答案】或同类训练2:已知,其中在第三象限,求的值.【知识
7、点】两组关系式的基本应用及三角函数值符号判定【数学思想】方程的思想【解题过程】第一步:定号在第三象限 第二步:定值由解方程得:【思路点拨】共三个量,两个方程,任给其中一个都可以求出另两个.【答案】【设计意图】通过计算熟练掌握公式,并体会分类讨论思想在三角函数符号确定中的应用活动 强化提升、灵活应用例2 已知,求的值【知识点】正余弦公式的灵活应用【数学思想】化归思想【解题过程】解:【思路点拨】通过平方升次后,便于使用,从而使问题得到简化.【答案】同类训练:在例2的条件下,能求吗.【知识点】正余弦公式的灵活应用【数学思想】化归思想【解题过程】解:是第二或第四象限角(1)当是第二象限角时,(2)当是
8、第四象限角时,【思路点拨】两者之间通知联系起来,三者任给其中一个可以求出另外两个.【答案】或例3 已知,求下列各式的值: (1) (2)【知识点】弦化切公式的灵活应用【数学思想】化归思想【解题过程】解:(1)分子分母上下同时除以得:(2)分子分母上下同时除以得:【思路点拨】关于的齐次分式,可以弦化切,变形为关于的式子.【答案】(1); (2)同类训练:已知,求值:【知识点】弦化切公式的灵活应用【数学思想】化归思想【解题过程】解:【思路点拨】关于的齐次分式,可以弦化切,变形为关于的式子.【答案】例4 求证:【知识点】三角函数关系式恒等变形【数学思想】转化化归【解题过程】解:左边=右边【思路点拨】
9、恒等式变形可由左到右,亦可由右到左,统一次数,统一函数名称.【答案】见解题过程同类训练 求证:【知识点】三角函数关系式恒等变形【解题过程】解:左边=右边=又左边=右边原式得证.【思路点拨】“切化弦”统一函数名,为证明恒等式奠基;恒等式证明可以从左右分别变形,得到相同或相等的中间式,从而等式得证.【答案】见解题过程3. 课堂总结知识梳理掌握两组三角函数基本关系式:和重难点归纳(1)运用三角函数公式求三角函数值涉及开方运算时,注意分析确定三角函数值的符号;不能确定的要进行分类讨论;(2)根据三角函数式的结构和求解目标,选择合理的变形方向,并在训练中不断提高三角恒等变形的能力.(三)课后作业基础型
10、自主突破1.已知,且为第四象限角,求的值.【知识点】正余弦关系式的基本应用及三角函数值符号判定【数学思想】方程的思想【解题过程】在第四象限 由得: 由得:【思路点拨】熟记公式,代入解方程求解.【答案】2.已知,求的值.【知识点】两组关系式的基本应用及三角函数值符号判定【数学思想】方程的思想【解题过程】在第二或第四象限 (1)若角在第二象限,则 由解方程得: (2)若角在第四象限,则 由解方程得:【思路点拨】共三个量,两个方程,任给其中一个都可以求出另两个;但角所在象限不确定时,注意分类讨论.【答案】或3.已知,求的值.【知识点】弦化切公式的灵活应用【数学思想】化归思想【解题过程】解:分子分母上
11、下同时除以得:【思路点拨】关于的齐次分式,可以弦化切,变形为关于的式子.【答案】4.已知,则求的值.【知识点】熟练应用公式【数学思想】【解题过程】解:【思路点拨】利用完全平方公式构造,代入即可.【答案】5.求证:【知识点】三角函数关系式恒等变形【数学思想】【解题过程】解:左边=右边【思路点拨】恒等式变形可由左到右,亦可由右到左,“切化弦”是常用统一函数名的办法.【答案】见解题过程能力型 师生共研1(1)已知,且为第二象限角,求.(2)已知,求.(3)已知,求.【知识点】熟练掌握三角函数关系式及符号判定【数学思想】方程的思想和分类讨论思想 【解题过程】 (1),且是第二象限角,cos.tan.(
12、2)sin,是第一或第二象限角当是第一象限角时,cos.tan;当是第二象限角时,tan.(3)sinm(m0,m±1),cos±±(当为第一、四象限角时取正号,当为第二、三象限角时取负号)当为第一、四象限角时,tan;当为第二、三象限角时,tan.【思路点拨】先求与sin的平方关系相联系的cos,再由公式求tan.(2)(3)中的范围不确定,须讨论确定开方的符号【答案】(1) (2)或 (3)或2.已知sincos,(0,),则(1)sincos_;(2)sin3cos3_;(3)tan_【知识点】三者的关系【数学思想】方程的思想和整体代换的思想【解题过程】 (
13、1)sincos,(sincos)2.2sincos.又(0,),sin>0,cos<0.sincos.(2)sin3cos3(sincos)(sin2sincoscos2)×(1).(3)方法一:由解得sin,cos.tan.方法二:因为sincos,sincos,由根与系数的关系,知sin,cos是方程x2x0的两根,所以x1,x2.又sincos<0,所以sin>0,cos<0.所以sin,cos.所以tan.方法三:同方法二,得sincos,所以.齐次化切,得,即60tan2169tan600,解得tan或tan.又(0,),sincos>
14、0,sincos<0,所以(,),所以tan.【思路点拨】(1)已知asinxbcosxc可与sin2xcos2x1联立,求得sinx,cosx.(2)sinxcosx,sinxcosx,sinxcosx之间的关系为(sinxcosx)212sinxcosx,(sinxcosx)212sinxcosx,(sinxcosx)2(sinxcosx)22.因此已知上述三个代数式中的任意一个代数式的值,便可求其余两个代数式的值【答案】(1)(2)(3)探究型 多维突破1.化简,其中为第二象限角.【知识点】三角函数关系式恒等变形【数学思想】化归思想【解题过程】解:原式=为第二象限角 原式=【思路点
15、拨】以开方化简为目标,分子分母同时升次凑完全平方;在开方时,注意符号的确定.【答案】2.化简【知识点】三角函数关系式恒等变形【数学思想】化归思想【解题过程】解:(法一)原式=(法二)原式=【思路点拨】法一通过因式分解降次,统一次数从而实现化简;法二用“1”的代换升次从而实现化简.【答案】自助餐1若sin,且为第四象限角,则tan的值等于()A.B C. D【知识点】三角函数关系式恒等变形【数学思想】化归思想【解题过程】因为sin,且为第四象限角,所以cos,所以tan.【思路点拨】熟记公式,代入解方程求解.【答案】D2.已知tan3,求sin23sincos1的值【知识点】两组三角函数关系式的灵活应用【数学思想】化归思想【解题过程】方法一:tan3>0,是第一、三象限角由得(为第一象限角),或(为第三象限角)sincos.sin23sincos13×11.方法二:tan3,sin2cos21,sin23sincos11111.【思路点拨】解这类问题有两个方法,一是直接求出si
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《LOGO标志设计》课件
- 牙齿抛光病因介绍
- 牙源性上颌窦炎病因介绍
- 开题报告:智能技术赋能的智慧生成性教学模式设计研究
- 铁路站房水电安装工程施工组织设计
- 开题报告:以文化人:大学红色文化育人体系研究
- 开题报告:新型城镇化背景下传统村落文化记忆的教育传承研究
- 开题报告:新时代儿童格局培育的时空路径研究
- 北京某高压燃气工程施工组织设计方案
- 2024年度健身器材采购与安装协议
- 《交车流程》课件
- 业绩铁三角预算、分析、激励
- 脉管系统演示课件
- 妊娠合并癫痫个案护理
- 疼痛病人出院指导
- 档案管理基础(档案的保管)课件
- 医院预收医疗款管理制度
- 辅导员专业化发展讲诉课件
- 职业生涯规划书机电一体化
- 储能项目工程监理规划方案
- 2024年中法网考前冲刺班徐金桂行政法讲义
评论
0/150
提交评论