集合的概念、子集、交集、并集、补集_第1页
集合的概念、子集、交集、并集、补集_第2页
集合的概念、子集、交集、并集、补集_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、集合的概念、子集、交集、并集、补集课题集合的概念、子集、交集、并集、补集教学目标1、了解集合的概念2、理解子集、补集以及全集的概念3、结合图形使学生理解交集并集的概念性质重点、难点重点:集合、子集、补集和全集的概念 难点:交集并集的概念,符号之间的区别与联系考点及考试要求理解集合及其表示;掌握子集、交集、并集、补集的概念。教学内容一、知识回顾1、集合的概念。2、集合的分类。3、集合的性质。4、常用的数集。5、集合的表示。6、元素与元素和集合与元素的关系以及集合与集合之间的关系。二、全集与补集1补集:一般地,设S是一个集合,A是S的一个子集(即 AS),由S中所有不属于A的元素组成的集合,叫做

2、S中子集A的补集(或余集),记作CSA,即CsA= x 1 x w S,且x £ A2、性质:Cs( CsA)=A ,CsSn©,Cs4>=S3、 全集:如果集合S含有我们所要研究的各个集合的全部兀素,这个集合就可以看作一个全集,全集通常用U表示三、典例分析例 1、(1 )若 S=1 , 2, 3, 4, 5, 6, A=1 , 3, 5,求 CsA(2)若 A=0,求证:CnA=N例2、已知全集U = R,集合A = x | K 2x + 1v 9,求Cu a例 3、 已知 S= x |- 1< x + 2v 8, A = x |- 2 v 1 x <

3、1, B = x | 5 v 2x 1 v 11,讨论 A 与 CSB 的关系一四、课堂练习1、已知全集 U = x | 1 v x v 9 , A = x | 1 v x v a ,若 A丰'',贝U a的取值范围是()(A) av 9(B) aw 9(C) a> 9( D) 1v a< 92、已知全集 U = 2, 4, 1 a , A = 2 , a2 a+ 2.如果 CuA = 1,那么 a 的值是?3、 已知全集U, A是U的子集, '是空集,B = CuA ,求CuB , Cu ' , CuU4、设U= 梯形 ,A= 等腰梯形,求CuA

4、.5、已知 U=R , A= x| x2+3x+2<0 ,求 CuA.6、集合U = (x, y) |x 1,2 ,y 1,2,A = (x, y) |x N*,y N*,x+y=3 ,求 CuA.7、设全集 U ( UH),已知集合 MN P,且MuN, N=CuP,贝U M与P的关系是()(A M=CuP;( B)M=P ;( C)M 二P;(D)M -P.五、交集和并集1 .交集的定义一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集记作A B (读作 A交B ',即 AB= x|xA,且 xB .如:1,2,3,6 口 1,2,5,10 = 1,2.又如:A

5、= a,b,c,d,e ,B=c,d,e,f.则 A B=c,d,e.2.并集的定义一般地,由所有属于集合 A或属于集合B的元素所组成的集合,即 A B =x|x - A,或 x B).如:1,2,3,6 1,2,5,10叫做A,B的并集.记作:A B (读作A并B',1,2,3,5,6,10.(1) 交集与并集的定义仅一字之差,但结果却完全不同,交集中的且有时可以省略,而并集中的或不能省略,补集 是相对于全集而言的,全集不同,响应的补集也不同;(2) 交集的性质:A B=B A, A A = A, A“,A B-A, A B-B ;(3) 并集的性质: A B=B A, A A =

6、A , A= A B, B-A B ;(4) A B =Au K= B , A B =Au B -A ;(5) 集合的运算满足分配律:A (B C)=(A B) (A C) , A (B C) =(A B) (A C);(6) 补集的性质:A GA=Q, A CuA=U , Cu(CuA)二A;(7) 摩根定律:Cu(A B)二QA CuB , Cu(A B)二 C“A Cu B ;六、典例分析例 1、设 A= x|x>-2 ,B= x|x<3,求 AflB.例2、设A= x|x是等腰三角形 , B= x|x是直角三角形,求A B.例 3、A= 4,5,6,8 ,B= 3,5,7,

7、8,求 A B.例 5、设 A= x|-1<x<2 ,B= x|1<x<3 ,求 A U B.说明:求两个集合的交集、并集时,往往先将集合化简,两个数集的交集、并集,可通过数轴直观显示;利用韦恩图表示两个集合的交集,有助于解题.例 6 (课本第 12 页)已知集合 A= (x,y)|y=x+3 , (x,y)|y=3x-1 ,求 A B.注:本题中,(x,y)可以看作是直线上的的坐标,也可以看作二元一次方程的一个解.高考真题选录:一、选择题1. 设集合 M =m Z | -3 :m :2 , N =n Z | -1< n < 3,则M 门 N 二()A. 0

8、1B. 10,C . 01,2D. 101,22. 已知全集U二R ,集合Ax| -2 < x < 3? , B x|x : -1或x,那么集合A (Cd B)等于()A. |-2 < x 4B. x| x < 3或 x > 4/C. x|2 < x:1?D. x|1 < x < 3/3. 设集合 U 一 1,2,3,4,5 1, A 一 1,2,3?,B-2,3,4?,贝U Cu (A B)二()(A) 23?(B) ",4,5?(C)4,5?(D) "54. 设集合 U =x N|O:xM , S=1,2,4,5 , T

9、二3,5,7,则 S (CuT)=()(A) 1,2,4(B) 123,4,5,7(C) 1,2(D) 1,2,4,5685. 集合R|y=lgx,x4 , B-2,-1,1,2 则下列结论正确的是()A. aDB-2,-1?B. (CrA)Ub =(:,0)C. AUB=(0, :)D. (CrARBrI-2,一16. 满足 Ma1,a2, a3,a 4,且MG a ,a2,a3 = a1 a?的集合M的个数是()(A) 1(B)2(C)3(D)47. 定义集合运算:A B-zz=xy,x A, y B?.设A-1,2, B -0,2?,则集合AB的所有元素之和为()A. 0 B . 2 C . 3 D . 68. 已知全集 U 二1,2,3,4,5,集合 A=x|x2-3x 2=0 , B 二x|x = 2a, a A,则集合 Cu (A B)中元素的个数为()A. 1B. 2C. 3D. 4二.填空题:1. 若集合 A=x|x < 2?, B*x|x > a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论