版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 <<复变函数与积分变换>>结业论文 复变函数与积分变换 在电路中的应用 系 别: 电气与电子工程系专 业: 自动化姓 名: 444444444学 号: 555555555555555指导教师: 秦志新 摘要:众所周知,复变函数在众多专业课程中都有着非常重要的作用,就如在正弦稳态电流分析中,将复杂的三角函数方程利用欧拉公式转化为复平面内求解相量法或利用运算法拉斯变换,从而把正弦稳态问题归结为以相量或象函数为变量的线性代数方程。 关键词:相量法,拉斯变换,正弦稳态,电路分析,复变函数,运算法。相量法是分析研究正线电流稳定状态的一种简单易行的方法,它是在数学理论和电路理论的
2、根底上建立的一种系统的方法。例1 :R=15W, L=12mH, C=5mF, , 求电路中的电流i和各元件的电压相量,以及电路的等效导纳和并联等效电路。画出相量模型 解;求出相关变 正弦稳态电路方程是一组同频正弦函数描述的代数方程,电路根本定律所涉及的正弦电流,电压的运算,不会改变电流电压同频正弦量的性质,即正弦量乘常数Ri、正弦量的微分,正弦量的微分和同频正弦量的代数和KCL、KVL等运算,其结果仍是同频正弦量。可以看出,各同频正弦电流电压之间,在有效值、初相上的“差异和联系寓于正弦函数描述电压、电流表达式及电路方程中。无疑,求解和分析正弦函数所描述的电路方程,将能获得正确的结果或结论,但
3、这一方法对于复杂电路将显得非常繁琐,使分析求解相当困难。基于这个问题,我们可以根据欧拉公式,将正弦函数用富指数函数表示,如前所述正弦量Us和i可表示为公式2(者不知道)上述变换说明,一个正弦量可以分解为一对共轭的复指数函数。根据叠加定理和数学理论,只要对其中一个分量进行求解就能写出全部结果,大大简化了求解的过程。例题 图1所示电路中,, , 求电压和。 解:为了帮助理解和防止错误,可根据原电路图画出对应的相量模型,它是将时域中的正弦电压、电流用相量标记,电路中的电阻、电感和电容元件根据VCR的相量形式分别用复数形式的R, ,标记,而其他与原电路相同。根据相量形式的电路图就可以直接写出相量形式的
4、电路方程。图a所示电路相对应的相量形式的电路图如图b所示。图中根据元件的的相量形式有根据,有 所以上述变换只是数学形式上的变换,与式编号相比,并无实质性的区别,但在形式上实现了非常有益的转换,它将与时间有关的同频正弦函数的电路方程转化为与时间无关的复代数形式的电路方程。更重要的是,它将正弦稳态中全部同频的正弦电压、电流转化为由个正弦量的有效值和初相组合成的复数表示,如:写出以下正弦电流对应的相量解:根据国家规定标准,统一用表示,因此,电流的表达式可改写为 电流相量可按定义直接写成 使同频的各正弦量在有效值、初相上的“差异和联系,在电路方程中表现的更清晰、更直观,这将大大简化对正弦稳态的表述和分
5、析求解的过程。拉普拉斯变换在复频域分析中的应用对于具有多个动态元件的复杂电路,除了将时域函数转换到复平面范围,利用欧拉公式转化为相量式,并用相量法求解外,我们也可以利用积分变换法求解复频域分析中的高阶微分方程。积分变换法是通过积分变换,把的时域函数变换为频域函数,从而把时域的微分方程化为频域的代数方程。求出频域方程后,再做反变换,返回时域,可以求得满足电路初始条件的原微分方程的解答,而不需要确定积分常数。拉斯变换是一种重要的积分变换,是求解高阶复杂动态电路的有效而重要的方法之一。例:t = 0时翻开开关 ,求电感电流和电压。计算初值 画运算电路注意: , 所以有: 所以的;一阶二阶电路应用在研究一阶电路和二阶电路中,所应用的方法是根据电路定律和元件的电压电流关系建立描述电路的方程,由上述讨论知,我们可以用相量法求解,但是对于具有多个动态元件的复杂电路,用直接求解微分方程的方法比拟困难。例如对于一个n阶微分方程,直接求解时需要知道变量及其各阶导数(知道n-1阶导数)在t=0时刻的值,而电路中给定的初始状态是各电感电流和电容电压在t=0时刻的值,从这些值求得所需初始条件的工作量很大。 为简便求解各
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年物业管理改善协议3篇
- 小班音乐教案锦集10篇
- 双十一营销活动方案大全10篇
- 医院护士演讲稿(合集15篇)
- 军训心得高一范文5篇
- 邀请活动的邀请函八篇
- 感恩中学生演讲稿三篇
- 会计的实习报告三篇
- 乒乓球比赛的作文400字合集7篇
- 保护水资源倡议书15篇
- DB32T 4353-2022 房屋建筑和市政基础设施工程档案资料管理规程
- 航空小镇主题乐园项目规划设计方案
- 保洁冬季防滑防冻工作措施
- 少儿美术课件-《我的情绪小怪兽》
- 拆除工程原始记录
- 重视围透析期慢性肾脏病患者的管理课件
- 预应力钢绞线张拉伸长量计算程序单端(自动版)
- 企业内部审计情况报表
- 基坑监测课件ppt版(共155页)
- 露天台阶爆破设计
- 中式婚礼PPT幻灯片课件
评论
0/150
提交评论