第三章--静电场中的电介质习题及答案(共45页)_第1页
第三章--静电场中的电介质习题及答案(共45页)_第2页
第三章--静电场中的电介质习题及答案(共45页)_第3页
第三章--静电场中的电介质习题及答案(共45页)_第4页
第三章--静电场中的电介质习题及答案(共45页)_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上 第三章 静电场中的电介质一、判断题1、当同一电容器内部充满同一种均匀电介质后,介质电容器的电容为真空电容器的倍。×2、对有极分子组成的介质,它的介电常数将随温度而改变。3、在均匀介质中一定没有体分布的极化电荷。(内有自由电荷时,有体分布)×4、均匀介质的极化与均匀极化的介质是等效的。×5、在无限大电介质中一定有自由电荷存在。6、如果一平行板电容器始终连在电源两端,则充满均匀电介质后的介质中的场强与真空中场强相等。7、在均匀电介质中,如果没有体分布的自由电荷,就一定没有体分布的极化电荷。8、在均匀电介质中,只有为恒矢量时,才没有体分布的极

2、化电荷。 =恒矢量 ×9、电介质可以带上自由电荷,但导体不能带上极化电荷。10、电位移矢量仅决定于自由电荷。×11、电位移线仅从正自由电荷发出,终止于负自由电荷。12、在无自由电荷的两种介质交界面上,线不连续。(其中,为自由电荷产生的电场,为极化电荷产生的电场)13、在两种介质的交界面上,当界面上无面分布的自由电荷时,电位移矢量的法向分量是连续的。14、在两种介质的交界面上,电场强度的法向分量是连续的。×15、介质存在时的静电能等于在没有介质的情况下,把自由电荷和极化电荷从无穷远搬到场中原有位置的过程中外力作的功。×16、当均匀电介质充满电场存在的整个空

3、间时,介质中的场强为自由电荷单独产生的场强的分之一。二、选择题1. 一平行板真空电容器,充电到一定电压后与电源切断,把相对介质常数为的均匀电介质充满电容器。则下列说法中不正确的是:(A) 介质中的场强为真空中场强的倍。(B) 介质中的场强为自由电荷单独产生的场强的倍。(C) 介质中的场强为原来场强的倍。(D) 介质中的场强等于真空中的场强。D2. 如果电容器两极间的电势差保持不变,这个电容器在电介质存在时所储存的自由电荷与没有电介质(即真空)时所储存的电荷相比(A)增多 (B)减少 (C)相同 (D)不能比较A3. 在图中,A是电量的点电荷,B是一小块均匀的电介质,都是封闭曲面,下列说法中不正

4、确的是:(A)(B)(C)(D)D4. 在均匀极化的电介质中,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度垂直,当h»r时,则空腔中心的关系为:(A)(B)(C)(D)C5. 在均匀极化的,挖出一半径为r,高度为h的圆柱形空腔,圆柱的轴平行于极化强度垂直,当h«r时,则空腔中心的关系为:(A)(B)(C)(D)B6. 一个介质球其内半径为R,外半径为R+a,在球心有一电量为的点电荷,对于R<r<R+a电场强度为:(A) (B) (C) (D)A7. 一内半径为a,外半径为b的驻体半球壳,如图所示,被沿+Z轴方向均匀极化,设极化强度为,球心O处的场

5、强是:(A)(B)(C)(D)D8. 内外半径为的驻极体球壳被均匀极化,极化强度为的方向平行于球壳直径,壳内空腔中任一点的电场强度是:(A) (B) (C) (D)B9. 半径为R相对介电常数为的均匀电介质球的中心放置一点电荷q,则球内电势的分布规律是:(A) (B) (C) (D)C10. 球形电容器由半径为的导体球和与它同心的导体球壳所构成,球壳的内半径为,其间一半充满相对介电常数为的均匀电介质,另一半为空气,如图所示,该电容器的电容为:(A) (B)(C)(D)D11. 把一相对介电常数为的均匀电介质球壳套在一半径为a的金属球外,金属球带有电量q,设介质球壳的内半径为a,外半径为b,则系

6、统的静电能为:(A) (B)(C) (D)B三、填空题1、如图,有一均匀极化的介质球,半径为R,极化强度为P,则极化电荷在球心处产生的场强是( )在球外Z轴上任一点产生的场强是( ) 2、带电棒能吸引轻小物体的原因是( )。轻小物体由于极化在靠近带电棒一端出现与带电棒异号的极化电荷3、附图给出了A、B两种介质的分界面,设两种介质A、B中的极化强度都是与界面垂直,且,当取由A指向B时,界面上极化电荷为( )号。当由B指向A时,界面上极化电荷为( )号。正 负 4、如果电介质中各的( )相同,这种介质为均匀电介质。如果电介质的总体或某区域内各点的( )相同,这个总体或某区域内是均匀极化的。 5、成

7、立的条件是( )。介质为均匀介质6、在两种不同的电介质交界面上,如果交界面上无自由电荷,则= ( )。7、介质中电场能量密度表示为 只适用于( )介质。适用于( )介质。各向同性的均匀线性 线性8、若先把均匀介质充满平行板电容器,(极板面积为S,极反间距为L,板间介电常数为)然后使电容器充电至电压U。在这个过程中,电场能量的增量是( )。9、平行板电容器的极板面积为s,极板间距为d中间有两层厚度各为的均匀介质(),它们的相对介电常数分别为。(1)当金属板上自由电荷的面密度为时,两层介质分界面上极化电荷的面密度= ( )。(2)两极板间的电势差( )。(3)电容C= ( )。 10、如图所示一平

8、行板电容器充满三种不同的电介质,相对介电常数分别为。极板面积为A,两极板的间距为2d,略去边缘效应,此电容器的电容是( )。11、无限长的圆柱形导体,半径为R,沿轴线单位长度上带电量,将此圆柱形导体放在无限大的均匀电介质中,则电介质表面的束缚电荷面密度是( )。12半径为a的长直导线,外面套有共轴导体圆筒,筒的内半径为b,导线与圆筒间充满介电常数为的均匀介质,沿轴线单位长度上导线带电为,圆筒带电为-,略去边缘效应,则沿轴线单位长度的电场能量是( )。13、一圆柱形的电介质截面积为S,长为L,被沿着轴线方向极化,已知极化强度沿X方向,且P=KX(K为比例常数)坐标原点取在圆柱的一个端面上,如图所

9、示则极化电荷的体密度( )在X=L的端面上极化电荷面密度为( )极化电荷的总电量为( )。 14、在如图所示的电荷系中相对其位形中心的偶极矩为( )。0四、问答题1、电介质的极化和导体的静电感应,两者的微观过程有何不同?答:从微观看,金属中有大量自由电子,在电场的作用下可以在导体内位移,使导体中的电荷重新分布。结果在导体表面出感应电荷。达到静电平衡时感应电荷所产生的电场与外加电场相抵消,导体中的合场强为零。导体中自由电子的宏观移动停止。在介质中,电子与原子核的结合相当紧密。电子处于束缚状态,在电场的作用下,只能作一微观的相对位移或者它们之间连线稍微改变方向。结果出现束缚电荷。束缚电荷所产生的电

10、场只能部分地抵消外场,达到稳定时,电介质内部的电场不为零。2、为什么要引入电位移矢量D?E与D哪个更基本些?答:当我们研究有电介质存在的电场时,由于介质受电场影响而极化,出现极化电荷,极化电荷的场反过来改变原来场的分布。空间任一点的场仍是自由电荷和极化电荷共同产生即: 因此,要求介质中的,必须同时知道自由电荷及极化电荷的分布。而极化电荷的分布取决于介质的形状和极化强度,而,而正是要求的电场强度。这样似乎形成计算上的循环,为了克服这一困难,引入辅助量。由知,只要已知自由电荷,原则上即可求,再由求。故更基本些。3、把平行板电容器的一个极板置于液态电介质中,极板平面与液面平行,当电容器与电源连接时会

11、产生什么现象?为什么?答:当电容器与电源连接时,电容器将离开电介质。这是因为当考虑电容器边缘效应时两极板外表面也带上等量异号电荷,当其中一极板平面与液面平行时,由于介质极化,该极板电荷所受到的静电力小于另一极板电荷所受到静电力。且二者方向相反电容器整体受一个向上的合力作用。五、证明题1、一个半径为R的电介质球,球内均匀地分布着自由电荷,体密度为,设介质是线性、各向同性和均匀的,相对介电常数为,试证明球心和无穷远处的电势差是: 证明:当时以球心为心,为半径作球面(高斯面)如图虚线所示,由对称性和的高斯定理得 由得当时取高斯面如图虚线所示,同理得取无限远处电势为零,则球心与无限远处的电势差等于球心

12、电势。根据电势与场强的关系得六、计算题1、将一个半径为a的均匀介质球放在电场强度为E0的均匀电场中;电场E0由两块带等量异号电荷的无限大的平行板所产生,假定介质球的引入未改变平板上的电荷分布,介质的相对介电常数为r, (1)求介质小球的总电偶极矩 (2)若用一个同样大小的理想导体做成的小圆球代替上述介质球(并设E0不变),求导体球上感应电荷的等效电偶极矩。解:(1)均匀介质球放在均匀电场中将被均匀极化,故只有球面上有极化电荷,设极化电荷面密度为,在球心产生的电场强度为,则球心的场强为如图1-1因由于余弦分布带电球面在球内产生匀强电场,所以根据对称性可得球内的场强为 图1-1其方向与方向相反所以

13、根据与的关系由、式得由极化强度定义得介质球的总电偶极矩为 (2)将导体球放在均匀电场中,导体球感应电荷面密度为余弦分布,如图1-2所示设根据对称性则球内的场强为 其方向与方向相反由静电平衡条件得 图1-2在球面上取一电偶极子,电量为偶极子臂为,根据对称性,元电偶极矩为 由、式得感应电荷的等效电偶极矩为 2、一圆柱形电介质长为L,其横截面的半径为R,被沿着轴线方向极化,极化强度(k为一常数),设坐标原点O在介质圆柱内左端面的中心,此外无其它电场源,试求:(1)在介质圆柱中心一点的电场强度E和电位移D;(2)在坐标原点O处的电场强度E和电位移D。解:极化电荷的体密度为即介质内均匀地分布差负的体极化

14、电荷,在的端面上的极化电荷面密度为 在的端面上的极化电荷密度为(1)在圆柱中心体极化电荷不产生场,只有在X=L处而极化电荷产生场,根据均匀带电圆盘轴线上的场强公式得 由电位移矢量定义式得中心处的为(2)在圆柱端部中心的场由体极化电荷和面极化电荷共同产生。在距原点处,取一圆盘,厚度如图所示,其上电量为圆盘上电荷面密度为该圆盘在原点O处产生的电场为 体极化电荷在原点O处产生的电场强度为面极化电荷在原点O处产生的电场强度为 原点处电位移矢量为3、一块柱极体圆片,半径为R,厚度为t,在平行于轴线的方向上永久极化,且极化是均匀的,极化强为P, 试计算在轴线上的场强E和电位移D(包括圆片内外)。解: 在垂

15、直x轴的两个外表面均匀带正负面极化电荷,如图所示,其面密度为对在圆片内任一点而言两表面相当无穷大均匀带电平面,圆片内电场强度为电位移矢量为对圆片内外轴线任一点而言,两表面相当于均匀带电圆盘。在距原点处,正负带电圆盘产生的场强分别为 该处的总电场强度为因为t很小,用台劳级数将上式在t=0处展开,取前两项取则有 所以 电位移矢量为4、半导体器件的p-n结中,n型内有不受晶格束缚的自由电子、p型区内则有相当于正电荷的空穴。由于两区交界处自由电子和空穴密度不同,电子向p区扩散,空穴向n区扩散,在结的两边留下杂质离子,因而产生电场,阻止电荷继续扩散,当扩散作用与电场的作用相平衡时,电荷及电场的分布达到稳

16、定状态,而在结内形成了一个偶电区(如图如示),称为阻挡层。现设半导体材料的相对介电常数为,结外电荷体密度,结内电荷的体分布为式中e为电子电量,k为常数,试求p-n结内电场强度和电势的分布,并画出、和随变化的曲线。解:建立坐标轴如图4-1所示,在结内距原点处取宽度为的无限大平面,该平面电荷密度为该带电平面在结内P点产生的场强为OB区电荷在P点产生的场强为 图4-1 所以OP区电荷在P点产生的场强为 图4-2 所以 PA区电荷在P点产生的场强为 图4-3 所以 图4-4由叠加原理得P点的总场强为场强随变化曲线如图4-3所示由高斯定理知,结外的场强为在结内任意点P的电势为电势随变化曲线如图4-4所示

17、,结内电荷体密度随变化曲线如图4-2所示。5、半导体器件的p-n结中,n型内有不受晶格束缚的自由电子、p型区内则有相当于正电荷的空穴。由于两区交界处自由电子和空穴密度不同,电子向p区扩散,空穴向n区扩散,在结的两边留下杂质离子,因而产生电场,阻止电荷继续扩散,当扩散作用与电场的作用相平衡时,电荷及电场的分布达到稳定状态,而在结内形成了一个偶电区(如图5-1所示),称为阻挡层。现设半导体材料的相对介电常数为,如果电荷的体分布为n区:(突变结)p区:式中是常数,为电子数且,其中各为p区和n区的厚度,试求结内电场强度和电势的分布并画出、和随变化的曲线。解:建立坐标轴,如图5-1所示,在P区内距原点处

18、找一个考察点P,P点的场强由三部分即BO段、OP段和PA段体分布电荷产生的。每一段即可看成是由许多无限大带电平面组成的,其电荷面密度为 图5-1 图5-2 图5-3由得 图5-4所以,P点的总场强为 图5-5取原点电势为零,由电势定义得 在n区内取一点P,如图5-2所示同理得各段在P点的场强为 所以,P点的总场强为 同理可得P点的电势为画出、和随变化曲线如图5-3、5-4、5-5所示6、平行板电容器的极板面积为S,间距为d,其间充满线性的、各向同性的电介质。介质的相对介电常数r在一极板处为rl,线性地增加到另一极板处为r2。略去边缘效应。(1)求这电容器的电容C;(2)当两极板上的电荷分别为Q

19、和-Q时,求介质内极化电荷体密度和表面上极化电荷的面密度。解:(1)建立坐标轴,如图所示设 , 则 由此得 因此板间任一点的介电常数为将平行板电容器的电容视为无限多个平行板电容元组成,如图所示,取距坐标原点为,厚度为一个电容元,该电容元的电容为其倒数为积分得 所以(2)作一圆柱形高斯面S,如图中虚线所示,由介质中的高斯定理,得电位移矢量为由与的关系和根据电位移矢量定义式得,极化强度为极化电荷体密度为正极板处的极化强度为板表面上的极化电荷面密度为负极板处的极化强度为板表面上的极化电荷面密度为7、一半径为a的导体球被内半径为b的同心导体球壳所包围,两球间充满各向同性的电介质,在离球心为r处介质的相

20、对介电常数(A为常数)。如果内球带电荷Q,外球壳接地,试求:(1)在电介质中离球心为r处的电势;(2)介质表面上的极化电荷面密度和介质中任一点处极化电荷的体密度;(3)介质中极化电荷的总量。解:(1)根据对称性,以球心为心,为半径在介质内作球面(高斯面),由的高斯定理得所以 因球壳的电势为零,故有(2)半径为球面上的极化强度为该表面上极化电荷面密度为半径为的球面上的极化强度为该表面上极化电荷面密度为半径为球面上的极化强度为介质内极化电荷体密度为(3)介质中极化电荷总量包括介质表面上的极化电荷和介质中极化电荷,即 8、为了使金属球的电势升高而又不使其周围空气击穿,可以在金属球表面上均匀地涂上一层

21、石蜡。设球的半径为1cm,空气的击穿场强为,石蜡的击穿场强为,其相对介电常数为2.0,问为使球的电势升到最高,石蜡的厚度应为多少?其中球的电势之值是多少? 解:设金属球带电量为Q,由对称性和介质中高斯定理得介质内外的场强为 取,代入上两式,得介质球壳内外表面的最大场强为由式和式联立得将已知数值代入式得由电势与场强积分关系得将代入式得将已知数据代入式得9、如图所示的圆柱形电容器,内圆柱的半径为R1,与它同轴的外圆筒的内半径为R2,长为L、其间充满两层同轴的圆筒形的均匀电介质,分界面的半径为R,它们的相对介电常数分别为,设两导体圆筒之间的电势差略去边缘效应,求:介质内的电场强度。解:设充电后,单位

22、长度的电量为,由对称性和介质中的高斯定理得由与的关系得两介质内的场强分别为圆筒之间的电势差为由式得导体圆筒电荷的线密度为将式分别代入式和式,得介质内的场强分别为10、为了提高输电电缆的工作电压,在电缆中常常放几种电介质,以减小内、外导体间电场强度变化,这叫分段绝缘。图中所示是这种电缆的剖面图。若相对介电常数的三种电介质作为绝缘物时,设内部导体每单位长度上带电量为。试求:(1)各层内的电场强度;(2)各层电场强度极大值;(3)在什么条件下,才能使介质内的电场强度保持为常数值?解:(1)根据对称性和高斯定理,求得电位移矢量为根据知,介质中离轴心分别为处的电场强度为(2)当分别等于时,各层电场强度为

23、极大值,其值为 (3)当时,有所以常数时,常数11、平行板电容器的两极板相距为a,极板面积为S,两极板之间填满电介质,绝对介电常数按下列规律变化,x轴的方向与平板垂直,x轴的原点在一块极板内表面上,若已知两极板间电势差为U,略去边缘效应,求电容及束缚电荷分布。解:在距原点为处取一厚度为的平行板电容器,其元电容为其倒数为 积分得 所以极板上的自由电荷 为由如图虚线所示作高斯面,由高斯定理得板内的电位移矢量为板内的场强为板内的极化强度为在介质表面上,束缚电荷面密度为在介质表面上束缚电荷面密度为介质中束缚电荷体密度为12、一空心的电介质球,其内半径为R1,外半径为R2,所带的总电荷量为Q,这些电荷均

24、匀分布于R1和R2之间的电介质球壳内。求空间各处的电场强度。介质的相对介电常数为. 解:由对称性和高斯定理得当r>R1时E=0 当时所以当时所以13、今有A、B、C三导体板互相平行地放置,AB、BC之间的距离均为d.BC之间充满相对介电常数为的介质,AB之间为真空,今使B板带+Q,试求各导体板上的电荷分布。忽略边缘效应。解:A、B板和B、C板各组成电容器,其电容分别为 取垂直B板的圆柱形高斯面,如图所示,根据高斯定理得由D的法线连续性 D1=D2=D得 再根据 得由此可得AB之间和BC之间的电势差为 A、B极板所带电量为B、C极板所带电量为由电荷守恒定律知A 、C板的内侧带-Q/2 电荷

25、,外侧带Q/2电荷。B板两侧各带Q/2电荷。14、在一块均匀的瓷质大平板表面处的空气中,电场强度为E的大小为220V/cm,其方向是指向瓷板且与它的表面法线成角。设瓷板的相对介电常数,求:(1)瓷板中的场强;(2)瓷板表面上极化电荷面密度。 解:均匀极介板内无极化电荷,设表面上极化电荷的面密度为,如图13-1所示。在板内,极化电荷产生的电场强度为式中为表面外法线方向上的单位矢量 根据场强叠加原理,板内的电场强度为以上三者关系如图13-2所示,由图可知极化电荷电密度为 图13-1 整理上式得 将已知数据代入式得 图13-2 15、在相对介电常数为的煤油中,离煤油表面深度h处,有一带正电的点电荷q

26、,如将煤油看作为无限大均匀介质,:求(1)在煤油表面上,该电荷的正上方A点处的极化电荷面密度;(2)在煤油表面与点电荷相距r处的B点的极化电荷面密度;(3)煤油表面极化电荷的总量。解:(1)在点电荷q的周围将出现负的极化电荷,煤油表面出现正的极化电荷。(如图)在煤油表面A点,极化电荷面密度最大,随着离A的距离增加,极化电荷面密度迅速减少,A点附近的液面两边的场强法向分量,可用叠加原理求得在空气中在煤油中由边界条件,即,得整理上式得2)同理,B点附近的液面两边场强法向分量为在空气中在煤油中由边界条件,得整理上式得 3)以A点为圆心,在液面上距A为处选一小圆环,设小圆环边缘离q的间距为r。显然,小

27、圆环面积,小圆环上极化电荷为 所以16、两个相同的空气电容器,电容都是900uF,分别充电到900V电压后切断电源,若把一个电容器浸入煤油中,(煤油的介电常数=2.0),再将两电容并联。 (1)求一电容器浸入煤油过程中能量的损失; (2)求两电容器并联后的电压; (3)求并联过程中能量的损失。 (4)问上述损失的能量到那里去了? 解:(1)电容器极板上的电量为 电容器在空气中的储蓄的能量为 能量损失为 (2)并联后总电容为并联后总电量为 所以并联后电压为 (3)并联前的能量: 并联后的能量:并联过程中的能量损矢为 4)损失的能量转化为介质的动能,最后通过磨擦转化为热能(内能)。17、一平行板电

28、容器的极板面积为S,间距为d(d2<<S),两极间充满电导率为、相对介电常数为的均匀导电介质。设在t=0时,给两极板各充上电量+Q和-Q,然后撤去电源。试求:(1)t=0时刻介质内的电场强度;(2)t=t时刻介质内的传导电流;(3)t=0t=过程中,从介质内释放的总焦耳热。解:(1)时刻,极板上的电量仍然为Q,由高斯定理知,此时板内电位移矢量为电场强度为(2)由欧姆定理的微分形式知,时刻有其中,而所以由初始条件,解微分方程得所以时刻介质内的传导电流为(3)由焦耳定律得 所以介质释放的总焦耳热为18、一个圆柱形电容器的内圆筒的半径为R1,外圆筒的内半径为R2,筒长L>>R

29、2,在R1和之间的空间填满长为L、相对介电常数为的圆筒形均匀电介质,其余的容积是空气间隙,如图18-1所示。假设电容器两极与一电源相连而维持其电势差为U,试求将介质圆筒抽出该电容器所需作的机械功?解:把圆住形电容器看成两个电容器串联而成,如图18-2所示根据圆柱形电容器电容公式知,每个电容器电容为根据电容器串联性质得 图18-1所以,总电容为 图18-2当介质抽出距离时,如图18-3所示,把电容器看作两个电容器并联,如图18-4所示其中所以 图18-3电容器储存的能量为由虚功原理得 图18-4外力作功为 = 另解:介质全部抽出时,电容器的能量为介质未抽出时,电容器的能量为根据功能关系知,全部抽

30、出介质时,外力所作的机械功为19、一平行板电容器由两块平行的矩形导体平板构成,平板宽为b,面积为S,两板间距为d,设两极板间平行地放一块厚度为t、大小与极板相同、相对介电常数为的电介质平板,两极板所带的电量分别为+Q和-Q。现将介质平板沿其长度方向从电容器内往外拉,以至它只有长度为x的一段还留在两板之间。(1)问这时介质平板受到的电场力的方向如何?(2)试证明,这时介质平板受到的电力为 其中(忽略边缘效应)解:(1)在电场中电介质被极化,其表面上产生极化电荷。在平行板电容器的边缘,由于边缘效应,电场是不均匀的,场强对电介质中正负电荷的作用力都有一个沿板面向右的分量,因此,电介质将受到一个向右的

31、合力(2)电容器由两部分并联而成,这两部分的电容分别为电容器的电容为其中电容器所储蓄的静电能为量由虚功原理知,作用在介质片上的力为20、一半径为R的电介质球,球内均匀地分布着自由电荷,体密度为,设介质是线性、各向同性和均匀的,相对介电常数为,求(a)电介质球内的静电能;(b)这一带电系统的总静电能。解:(a)根据对称性和高斯定理得球内外的电位移矢量和电场强度分别为电介质球内的静电能为(b)带电系统的总静电能为 21、平行板空气电容器两极板A、B相距为,竖直地插在相对介电常数为、密度为的均匀液态电介质中(如图21-1所示),两极板间保持着一定的电势差U,则液态电介质在两板间会上升一定高度h,若不

32、计表面张力作用,试求作用在液体电介质表面单位面积上的平均牵引力T和液面上升的高度h。解:带电的平行板电容器插入液态电介质中使液体沿与平板电容器两板的分界面产生极化电荷,在静电吸引力作用下液体被吸上来,直至液体重力与静电吸引力平衡为止。如图21-2所示,高度为h的液态电介质所受到的重力为电容器是由两部分并联组成,设介质进入极板间的高度为时,两部分的电容分别为 , 电容器的电容为电容器储能为 由虚功原理知,静电力作功为 图21-1根据平衡条件得 整理上式介质的高度为 图21-2作用在液态电介质表面单位面积上的平均牵引力为22、当用高能电子轰击一块有机玻璃时,电子渗入有机玻璃并被内部玻璃所俘获。例如

33、,当一个0.5的电子束轰击面积为25cm2、厚为12mm的有机玻璃板(相对介电常数)达1s,几乎所有的电子都渗入表面之下约57mm的层内。设这有机玻璃板的两面都与接地的导体板接触,忽略边缘效应,并设陷入的电子在有机玻璃中均匀分布,如图22-1所示。(1)求带电区的极化电荷的密度;(2)求有机玻璃表面的极化电荷密度;(3)画出D、E、(电势)作为电介质内部的位置函数的图形;(4)求带电层中心的电势;(5)求在两接地导体板之间的没有电荷区域内的场强;(6)求这有机玻璃板里贮存的静电能。解(1)由电流强度定义知 带电区电荷体密度为 图22-1如图22-2所示在带电区内作柱形高斯面,坐标原点在对称中心

34、,由高斯定理得层内任一点处的值为 图22-2取,得带电层表面处的极化强度为带电层表面极化电荷面密度为(2)作一个包围带电层的柱形高斯面,如图22-2所示,由高斯定理得有机玻璃表面的极化电荷面密度为(3)带电层内任一点电势为带电层外任一点电势为随x变化规律曲线如图22-3所示图22-3(4)取x=0代入式得,带电层中心处的电势为(5)由式得带电层外的场强为(6)有机玻璃内贮存的静电能为23、在一无限大均匀介质内,挖出一无限长圆柱形真空区,圆柱形的横截面半径为R。设介质内场强E均匀,且与圆柱形轴线垂直,求圆柱形轴线上的一点的场强。 解:介质在与真空的分界面上出现极化电荷,轴线上一点O的场强是介质中

35、场强和极化电荷在轴线上O点的场强的矢量和。极化电荷面密度为 (为极化强度,n为表面法线方向)如图所示,取一宽度为的无限长带电线,其上电荷线密度为 该带电线在轴线上产生的场强为极化电荷在轴线上产生的场强为所以轴线上一点的总场强为24、一平行板电容器两极板间距为d,其间放置一块厚度为t的介质平板,板面与极板成倾角,介质的相对介电常数为,若两极分别带上面密度为的电荷,试求两极板间的电势差。(设倾角为较小,边缘效应可以忽略)解:设两极板的边长为和的长方形,建立坐标如图所示,上、下两板一小面积构成平行板电容器,该电容器看成由两个电容器串联而成,其中一个是空气,另一个是介质,每个电容器中电容分别为根据电容

36、器串联性质得式中为极板面积 极板上电量为极板间的电势差为 图24-125、半径为R1的半导体球,一半浸没在相对介电常数为的半无限而均匀的液体介质中,另一半露在真空中,若此导体球所带的电量为Q,(1)证明:导体球外任一点的电场强度均沿求的径向;(2)求出导体球表面上的面电荷分布解:(1)如果导体球外任一点的电场强度不沿径向则上半球和下半球表面电荷分布将不均匀。它们在球心处产生的合场强不为零,这与导体球内场强为零相矛盾。故球外任一点的场必沿径向(2)导体球与无限远处构成球形电容器如图所示根据球形电容器的电容公式有:当时根据上式得半球形电容器的电容为:本题中的球形电容器可看作是两个半球形电容器并联而

37、成。其中一个是空气,别一个是介质,每个半球形电容器电容为根据电容并联性质得,电容器的总电容,总电压分别为两个半球形电容器所带电量分别为两个半球表面上的电荷面密度分别为26、两导体球,半径均为R,球心间距为d,有一均匀电场E0,其方向垂直于两球心的联线,假设Rd,球两球之间的相互作用力。解: 图26-1 图26-2设导体球表面的感应电荷为余弦分布,如图26-1所示,在球内产生的附加电场为,则附加电场与外电场抵消(不考虑另一导体球感应电荷影响),使球内场强为零满足静电平衡条件。由此得在球外可将余弦分布的带电球壳等视为偶极子,如图26-2所示,其电偶极矩为电偶极子处产生场强电偶极子中具有的电势能(之

38、间的相互作用能)为两球间的相互作用力为27、一半径为R的导体球浮在某种介质溶液中,导体球的质量密度为,介质溶液的相对介电常数为,质量密度为,且,试用计算必须在此导体球上放置多少电量的电荷,才能使它正好有一半浸没在介质溶液中。解:设导体球放置电量为Q的电荷时,它正好一半浸没在介质溶液中。导体球在介质溶液中受到三个力的作用即导体球自身的重力、导体球受到的浮力和极化电荷对它的吸力,如图27-1所示,处于平衡状态时,有导体球所受浮力为导体球所受到的重力为 图27-1为了球极化电荷对导体球的吸力为,先求极化电荷密度,导体球表面各介质表面电荷分布如图27-2所示,作球面为高斯面,根据高斯定理得 图27-2

39、 在介质交界面上有由、式得极化电荷密度为极化电荷为半球面分布,在球心处产生的场为极化电荷对导体球的吸力为将、式代入式得整理得28、有一半径为a,相对介电常数为的均匀介质小球,与另一半径为b,电势为的导体小球相距为r(r>>a、b)。求介质小球受力的近似表达式。 解:设导体球带电量为,由高斯定理得 导体球的电势为由此得导体球所带电量为导体球在介质球处产生的场可视为匀强场,即在介质球心处产生的场强为介质球在均匀外场作用下发生极化,设极化强度为,极化电荷为余弦分布,即极化电荷在介质球内产生的场强为介质球内总场强为介质极化强度为所以介质球的等效电偶极矩为介质球的等效电偶极矩与外场之间的相互

40、作用能为介质球外场中所受的力为29、两均匀带有等量异号电荷的无限大平面导体板之间放一均匀的介质球,球的半径为R极化率为 ,求球内的场强,假定介质球离两平板都相当远,球处在场中时,带电板上的电荷仍然均匀分布,因此,自由电荷单独产生的场仍是均匀场。解法1:分步极化法设想介质球的极化是分若干阶段进行的,最终达到静电平衡。在介质球刚放在电场中瞬时,极化电荷尚未形成,因而介质球内的场强就是外场,它使球均匀极化,极化强度为由引起的极化电荷在球内所产生的附加场强为附加电场引起的附加极化,附加的极化强度为附加的极化强度产生的附加场强为附加场强又引起新的附加极化,这样的过程一步一步继续下去,在第n步,附加极化强

41、度为于是介质球内的场强等于自由电荷的场强和附加场强之总和,即根据 得以上能求得正确结果是因为均匀球内部的场是均匀的,而且介质的极化率应比较小,同时极化不影响自由电荷的分布。解法2:均匀的介质球在均匀电场中的极化是均匀的,而均匀极化的介质球表面的极化面电荷在球内单独产生的场强为即是与极化强度的方向相反的均匀电场,若介质中的场强为,则于是所以30、半径为a金属球,带有电量q0,球外紧贴一层厚度为b,相对介电常数为的均匀固体电介质,固体电介质外充满相对介电常数为的均匀气体电介质,假定,讨论下列各问题:电位移矢量,电场强度,极化强度,电荷分布,电势。解:(1)空间各点的电位移矢量由球对称,作高斯面,用

42、介质中的高斯定理可求出空间各点的电位移矢量在金属球内,在固体介质内,在气体介质内,(2)空间各点的电场强度在金属球内,在固体介质内,在气体介质内,(3)空间各点的极化强度在金属球内,在固体介质内,在气体介质内(4)电荷分布在金属球表面上自由电荷分布在固体介质与金属球的交界面上极化电荷分布在两种介质的交界面上极化电荷分布(5)空间各点的电势金属球的电势为固体介质中任一点的电势为气体介质中任一点的电势为各物理量分布情况如图所示。31、设有一驻极体(具有永久极化的特殊介质)制成的球,半径为 R,其永久极化强度为P0为恒量,若取的方面为z轴,试求z轴上的电位移矢量,设原点在球心上。解:均匀极化的介质球在Z轴上所产生的场强,在球内和球外分别为在球内由 关系得在球外由 (球外为真空)关系得计算结果表明:即使没有自由电荷,也不为零,说明与极化电荷并不是无关系的。与的关系如图所示。设空间为两种不同的均匀电介质所充满,两种介质的交界面是一个平面,在交界面上有一个电量量q的点电荷,试求空间各点的电场强度和电移矢量。解:由于点电荷位于界面上,在两介质的交界面上,电场强度只有切向分量,即,因而,除点电荷所在处外,分界面上无极化电荷分布,在点电荷与介质的“交界面”上,将出现极化电荷,这个极化电荷是与点电荷重合在一起的点电荷,设极化电荷的电量为,由于电量为的点电荷激发的电场具

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论