版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、;. 数学公式大全 常见公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)
2、/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(
3、A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n
4、-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R (注: 其中 R 表示三角形的外接圆半径) 余弦定理 b2=a2+c2-2accosB (注:角B是边a和边c的夹角) 圆的标准方程 (x-a)2+(y-b)2=r2 (注:(a,b)是圆心坐标) 圆的一般方程 x2+y2+Dx+E
5、y+F=0 (注:D2+E2-4F>0) 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2 圆柱侧面积 S=c*h=2*h 圆锥侧面积 S=1/2*c*l=*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1
6、/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=*r2h 基本公式(1)抛物线y = ax2 + bx + c (a0) 就是y等于a乘以x 的平方加上 b乘以x再加上 c 置于平面直角坐标系中 a > 0时开口向上 a < 0时开口向下 (a=0时为一元一次函数) c>0时函数图像与y轴正方向相交 c< 0时函数图像与y轴负方向相交 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 (当然a=0且b0时该函数为一次函数) 还有顶点公式y = a(x+h)* 2+ k
7、,(h,k)=(-b/(2a),(4ac-b2)/(4a) 就是y等于a乘以(x+h)的平方+k -h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值和对称轴 抛物线标准方程:y2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y2=2px y2=-2px x2=2py x2=-2py (2)圆球体积=(4/3)(r3) 面积=(r2) 周长=2r =d 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F&
8、gt;0 (一)椭圆周长计算公式 按标准椭圆方程:长半轴a,短半轴b 设 =(a-b)/(a+b) 椭圆周长 L(a+b)(1 + 2/4 + 4/64 + 6/256 + 258/16384 + .) 简化:L1.5(a+b)- sqrt(ab) 或 L(a+b)(64 - 34)/(64 - 162) (二)椭圆面积计算公式 椭圆面积公式: S=ab 椭圆面积定理:椭圆的面积等于圆周率()乘该椭圆长半轴长(a)与短半轴长(b)的乘积。 以上椭圆周长、面积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变而来。常数为体,公式为用。 椭球物体 体积计算公式椭圆 的 长半径*短
9、半径*高 (3)三角函数和差角公式 sin(A+B)=sinAcosB+cosAsinB ;sin(A-B)=sinAcosB - sinBcosA ; cos(A+B)=cosAcosB - sinAsinB ;cos(A-B)=cosAcosB + sinAsinB ; tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB) ; cot(A+B)=(cosAcotB-1)/(cosB+cotA) ;cot(A-B)=(cosAcotB+1)/(cosB-cotA) ; 倍角公式 tan2A=2tanA/(1-t
10、an2A) ;cot2A=(cot2A-1)/2cota ; cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a ; sin2A=2sinAcosA=2/(tanA+cotA); 另:sin+sin(+2/n)+sin(+2*2/n)+sin(+2*3/n)+sin+2*(n-1)/n=0 ; cos+cos(+2/n)+cos(+2*2/n)+cos(+2*3/n)+cos+2*(n-1)/n=0 以及 sin2()+sin2(-2/3)+sin2(+2/3)=3/2 ; tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0; 四倍角公式: sin4
11、A=-4*(cosA*sinA*(2*sinA2-1) cos4A=1+(-8*cosA2+8*cosA4) tan4A=(4*tanA-4*tanA3)/(1-6*tanA2+tanA4) 五倍角公式: sin5A=16sinA5-20sinA3+5sinA cos5A=16cosA5-20cosA3+5cosA tan5A=tanA*(5-10*tanA2+tanA4)/(1-10*tanA2+5*tanA4) 六倍角公式: sin6A=2*(cosA*sinA)*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA2) cos6A=(-1+2*cosA2)*(16*cosA4
12、-16*cosA2+1) tan6A=(-6*tanA+20*tanA3-6*tanA5)/(-1+15*tanA2-15*tanA4+tanA6) 七倍角公式: sin7A=-(sinA*(56*sinA2-112*sinA4-7+64*sinA6) cos7A=(cosA*(56*cosA2-112*cosA4+64*cosA6-7) tan7A=tanA*(-7+35*tanA2-21*tanA4+tanA6)/(-1+21*tanA2-35*tanA4+7*tanA6) 八倍角公式: sin8A=-8*(cosA*sinA*(2*sinA2-1)*(-8*sinA2+8*sinA4+1
13、) cos8A=1+(160*cosA4-256*cosA6+128*cosA8-32*cosA2) tan8A=-8*tanA*(-1+7*tanA2-7*tanA4+tanA6)/(1-28*tanA2+70*tanA4-28*tanA6+tanA8) 九倍角公式: sin9A=(sinA*(-3+4*sinA2)*(64*sinA6-96*sinA4+36*sinA2-3) cos9A=(cosA*(-3+4*cosA2)*(64*cosA6-96*cosA4+36*cosA2-3) tan9A=tanA*(9-84*tanA2+126*tanA4-36*tanA6+tanA8)/(1-
14、36*tanA2+126*tanA4-84*tanA6+9*tanA8) 十倍角公式: sin10A=2*(cosA*sinA*(4*sinA2+2*sinA-1)*(4*sinA2-2*sinA-1)*(-20*sinA2+5+16*sinA4) cos10A=(-1+2*cosA2)*(256*cosA8-512*cosA6+304*cosA4-48*cosA2+1) tan10A=-2*tanA*(5-60*tanA2+126*tanA4-60*tanA6+5*tanA8)/(-1+45*tanA2-210*tanA4+210*tanA6-45*tanA8+tanA10) 万能公式: s
15、in=2tan(/2)/1+tan2(/2) cos=1-tan2(/2)/1+tan2(/2) tan=2tan(/2)/1-tan2(/2) 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) cot(A/2)=(1+cosA)/(1-cosA) cot(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+si
16、n(A-B); 2cosAsinB=sin(A+B)-sin(A-B) ; 2cosAcosB=cos(A+B)+cos(A-B) ;-2sinAsinB=cos(A+B)-cos(A-B) ; sinA+sinB=2sin(A+B)/2)cos(A-B)/2 ;cosA+cosB=2cos(A+B)/2)sin(A-B)/2) ; tanA+tanB=sin(A+B)/cosAcosB; tanA-tanB=sin(A-B)/cosAcosB ; cotA+cotB=sin(A+B)/sinAsinB; -cotA+cotB=sin(A+B)/sinAsinB ; 降幂公式 sin&
17、sup2;(A)=(1-cos(2A)/2=versin(2A)/2; cos²()=(1+cos(2A)/2=covers(2A)/2; tan²()=(1-cos(2A)/(1+cos(2A); 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 诱导公式 公式一: 弧度制下的角的表示: sin(2k)sin (kZ) cos(2k)cos (kZ) tan(2k)tan (kZ) cot(2k)cot (kZ) sec(2k)sec (
18、kZ) csc(2k)csc (kZ) 角度制下的角的表示: sin (+k·360°)sin(kZ) cos(+k·360°)cos(kZ) tan (+k·360°)tan(kZ) cot(+k·360°)cot (kZ) sec(+k·360°)sec (kZ) csc(+k·360°)csc (kZ) 公式二: 弧度制下的角的表示: sin()sin (kZ) cos()cos(kZ) tan()tan(kZ) cot()cot(kZ) sec()sec(kZ) cs
19、c()csc(kZ) 角度制下的角的表示: sin(180°+)sin(kZ) cos(180°+)cos(kZ) tan(180°+)tan(kZ) cot(180°+)cot(kZ) sec(180°+)sec(kZ) csc(180°+)csc(kZ) 公式三: sin()sin(kZ) cos()cos(kZ) tan()tan(kZ) cot()cot(kZ) sec()sec(kZ) csc)csc(kZ) 公式四: 弧度制下的角的表示: sin()sin(kZ) cos()cos(kZ) tan()tan(kZ) cot
20、()cot(kZ) sec()sec(kZ) cot()csc(kZ) 角度制下的角的表示: sin(180°)sin(kZ) cos(180°)cos(kZ) tan(180°)tan(kZ) cot(180°)cot(kZ) sec(180°)sec(kZ) csc(180°)csc(kZ) 公式五: 弧度制下的角的表示: sin(2)sin(kZ) cos(2)cos(kZ) tan(2)tan(kZ) cot(2)cot(kZ) sec(2)sec(kZ) csc(2)csc(kZ) 角度制下的角的表示: sin(360
21、76;)sin(kZ) cos(360°)cos(kZ) tan(360°)tan(kZ) cot(360°)cot(kZ) sec(360°)sec(kZ) csc(360°)csc(kZ) 公式六: 弧度制下的角的表示: sin(/2)cos(kZ) cos(/2)sin(kZ) tan(/2)cot(kZ) cot(/2)tan(kZ) sec(/2)csc(kZ) csc(/2)sec(kZ) 角度制下的角的表示: sin(90°)cos(kZ) cos(90°)sin(kZ) tan(90°)cot(kZ
22、) cot(90°)tan(kZ) sec(90°)csc(kZ) csc(90°)sec(kZ) 弧度制下的角的表示: sin(/2)cos(kZ) cos(/2)sin(kZ) tan(/2)cot(kZ) cot(/2)tan(kZ) sec(/2)csc(kZ) csc(/2)sec(kZ) 角度制下的角的表示: sin (90°)cos(kZ) cos (90°)sin(kZ) tan (90°)cot(kZ) cot (90°)tan(kZ) sec (90°)csc(kZ) csc (90°
23、)sec(kZ) 3 弧度制下的角的表示: sin(3/2)cos(kZ) cos(3/2)sin(kZ) tan(3/2)cot(kZ) cot(3/2)tan(kZ) sec(3/2)csc(kZ) csc(3/2)sec(kZ) 角度制下的角的表示: sin(270°)cos(kZ) cos(270°)sin(kZ) tan(270°)cot(kZ) cot(270°)tan(kZ) sec(270°)csc(kZ) csc(270°)sec(kZ) 4 弧度制下的角的表示: sin(3/2)cos(kZ) cos(3/2)si
24、n(kZ) tan(3/2)cot(kZ) cot(3/2)tan(kZ) sec(3/2)sec(kZ) csc(3/2)sec(kZ) 角度制下的角的表示: sin(270°)cos(kZ) cos(270°)sin(kZ) tan(270°)cot(kZ) cot(270°)tan(kZ) sec(270°)csc(kZ) csc(270°)sec(kZ) (4)反三角函数arcsin(-x)=-arcsinx arccos(-x)=-arccosx arctan(-x)=-arctanx arccot(-x)=-arccotx
25、 arc sin x+arc cos x=/2 arc tan x+arc cot x=/2 (5)数列等差数列通项公式:ana1(n-1)d 等差数列前n项和:Sn=n(A1+An)/2 =nA1+n(n-1)d/2 等比数列通项公式:an=a1*q(n1); 等比数列前n项和:Sn=a1(1-qn)/(1-q) =(a1-a1qn)/(1-q) =a1/(1-q)-a1/(1-q)*qn (n1) 某些数列前n项和: 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1)
26、12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=(n(n+1)/2)2 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 (6)乘法与因式分解因式分解 a2-b2=(a+b)(a-b) a2±2ab+b2=(a±b)2 a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) a3±3a2b+3ab2±b3=(a±b)3 乘法公式 把上面的因式分解公式左边和右边颠倒过来就是乘法公式 (7)三角不等式
27、-|a|a|a| |a|b<=>-bab |a|b<=>-bab |a|-|b|a+b|a|+|b| |a|b<=>-bab |a|-|b|a-b|a|+|b| |z1|-|z2|-.-|zn|z1+z2+.+zn|z1|+|z2|+.+|zn| |z1|-|z2|-.-|zn|z1-z2-.-zn|z1|+|z2|+.+|zn| |z1|-|z2|-.-|zn|z1±z2±.±zn|z1|+|z2|+.+|zn| (8)一元二次方程一元二次方程的解wx1= -b+(b2-4ac)/2a x2= -b-(b2-4ac)/2a 根
28、与系数的关系(韦达定理) x1+x2=-b/a ; x1*x2=c/a 判别式= b2-4ac=0 则方d程有相等的个实根 >0 则方程有两个不相等的两实根 <0 则方程有两共轭复数根d(没有实根) 对数基本性质如果a>0,且a1,M>0,N>0,那么: 1、alog(a)(b)=b 2、log(a)(a)=1 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(Mn)=nlog(a)(M) 6、log(a)M(1/n)=log(a)(M)/n 公式分
29、类公式表达式 圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:=D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c' *h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4*r2 圆柱侧面积 S=c*h=2*h 圆锥侧面积 S=1/2*c*l=*r*l 弧长公式 l=a*r a是圆
30、心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=*r2h 图形周长 面积 体积公式 长方形的周长=(长+宽)×2 c =2a+b 正方形的周长=边长×4 c=4a 长方形的面积=长×宽 s=ab 正方形的面积=边长×边长 s=a2 三角形的面积=底×高÷2 已知三角形底a,高h,则Sah/2 已知三角形三边a,b,c,半周长p,
31、则S p(p - a)(p - b)(p - c) (海伦秦九韶公式) (p= (a+b+c)/2) 和:(a+b+c)*(a+b-c)*1/4 已知三角形两边a,b,这两边夹角C,则SabsinC/2 设三角形三边分别为a、b、c,内切圆半径为r 则三角形面积=(a+b+c)r/2 设三角形三边分别为a、b、c,外接圆半径为r 则三角形面积=abc/4r 已知三角形三边a、b、c,则S 1/4c2a2-(c2+a2-b2)/2)2 (“三斜求积” 南宋秦九韶) 注:秦九韶公式与海伦公式等价 | a b 1 | S=1/2 * | c d 1 | | e f 1 | 【| a b 1| | c
32、 d 1| 为三阶行列式,此三角形ABC在平面直角坐标系内A(a,b),B(c,d), C(e,f),这里| e f 1 | ABC选区取最好按逆时针顺序从右上角开始取,因为这样取得出的结果一般都为正值, 如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三角形面积的大小!】 秦九韶三角形中线面积公式: S=(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)/3 其中Ma,Mb,Mc为三角形的中线长. 平行四边形的面积=底×高 梯形的面积=(上底+下底)×高÷2 直径 圆的周长=d= 2r 圆的面积=
33、r2 长方体的表面积= (长×宽+宽×高高×长)×2 s=2ab+bc+ca 长方体的体积 =长×宽×高 v=abc 正方体的表面积=棱长×棱长×6 s=6a2 正方体的体积=棱长×棱长×棱长 v=a3 圆柱的侧面积=底面圆的周长×高 s=ch 圆柱的表面积=上下底面面积+侧面积 s=2r2 圆柱的体积=底面积×高 v=sh 圆锥的体积=底面积×高÷3 v=sh÷3 柱体体积=底面积×高 平面图形 名称 符号 周长C和面积S 正方形 a
34、边长 C4a Sa2 长方形 a和b边长 C2(a+b) Sab 三角形 a,b,c三边长 其中s(a+b+c)/2 Sah/2 ha边上的高 ab/2×sinC s周长的一半 s(s-a)(s-b)(s-c)1/2 A,B,C内角 a2sinBsinC/(2sinA) 概率公式定义:p(A)mn, 全概率公式(贝页斯公式) 某事件A是有B,C,D三种因素造成的,求这一事件发生的概率 p(A)=p(A/B)p(B)+p(A/C)p(C)+p(A/D)p(D) 其中p(A/B)叫条件概率,即:在B发生的情况下,A发生的概率 伯努力公式 是用以求某事件已经发生,求其是哪种因素的概率造成的
35、 好以上例中已知A事件发生了,用柏努力公式可以求得是B因素造成的概率是多大,C因素,D因素同样也求 古典概型 P(A)=A包含的基本事件数/基本事件总数 几何概型 P(A)=A面积/总的面积 条件概率 P(A|B)=Nab/Nb=P(AB)/P(B)=AB包含的基本事件数/B包含的基本事件数 概率的性质 性质P()=0. 性质(有限可加性)当n个事件A1,An两两互不相容时:P(A1.An)=P(A1)+.+P(An) 性质对于任意一个事件A:P(A)=1-P(非A) 性质当事件A,B满足A包含于B时:P(BnA)=P(B)-P(A),P(A)P(B) 性质对于任意一个事件A,P(A)1 性质
36、对任意两个事件A和B,P(B-A)=P(B)-P(AB) 性质(加法公式)对任意两个事件A和B,P(AB)=P(A)+P(B)-P(AB) 几何公理线 角1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两
37、直线平行,内错角相等 14 两直线平行,同旁内角互补 三角形(三角形具有稳定性)15 定理 三角形任意两边的和大于第三边 16 推论 三角形任意两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(sas) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( asa)有两角和它们的夹边对应相等的两个三角形全等 24 边边边公理(sss) 有
38、三边对应相等的两个三角形全等 25 斜边、直角边公理(hl) 有斜边和一条直角边对应相等的两个直角三角形全等 26 定理1 在角的平分线上的点到这个角的两边的距离相等 27 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 28 角的平分线是到角的两边距离相等的所有点的集合 29 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 30 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 31 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 32 推论3 等边三角形的各角都相等,并且每一个角都等于60° 33 等腰三角形的判定定理 如果一个三角形有两
39、个角相等,那么这两个角所对的边也相等(等角对等边) 34 推论1 三个角都相等的三角形是等边三角形 35 推论 2 有一个角等于60°的等腰三角形是等边三角形 36 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 37 直角三角形斜边上的中线等于斜边上的一半 38 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 39 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 40 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 41 定理1 关于某条直线对称的两个图形是全等形 42 定理 2 如果两个图形关于某直线对称,那么
40、对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 43逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 44勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 45勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 四边形(四边形具有不稳定性)46定理 四边形的内角和等于360° 47四边形的外角和等于360° 48多边形内角和定理 n边形的内角的和等于(n-2)×180°
41、 49推论 任意多边的外角和等于360° 50平行四边形性质定理1 平行四边形的对角相等 51平行四边形性质定理2 平行四边形的对边相等 52推论 夹在两条平行线间的平行线段相等 53平行四边形性质定理3 平行四边形的对角线互相平分 54平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 55平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 56平行四边形判定定理3 对角线互相平分的四边形是平行四边形 57平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 58矩形性质定理1 矩形的四个角都是直角 59矩形性质定理2 矩形的对角线相等 60矩形判定定理1 有
42、三个角是直角的四边形是矩形 61矩形判定定理2 对角线相等的平行四边形是矩形 62菱形性质定理1 菱形的四条边都相等 63菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 64菱形面积=对角线乘积的一半,即s=(a×b)÷2 65菱形判定定理1 四边都相等的四边形是菱形 66菱形判定定理2 对角线互相垂直的平行四边形是菱形 67正方形性质定理1 正方形的四个角都是直角,四条边都相等 68正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 69定理1 关于中心对称的两个图形是全等的 70定理2 关于中心对称的两个图形,对称点连线
43、都经过对称中心,并且被对称中心平分 71逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 72等腰梯形性质定理 等腰梯形在同一底上的两个角相等 73等腰梯形的两条对角线相等 74等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 75对角线相等的梯形是等腰梯形 76平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 77 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 78 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边 79 三角形中位线定理 三角形的中位线平行于第三边,并且等
44、于它的一半 80 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h 81 (1)比例的基本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 82 (2)合比性质 如果ab=cd,那么(a±b)b=(c±d)d 83 (3)等比性质 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 84 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 85 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 86 定理 如果
45、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 87 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 88 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 89 相似三角形判定定理1 两角对应相等,两三角形相似(asa) 90 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 91 判定定理2 两边对应成比例且夹角相等,两三角形相似(sas) 92 判定定理3 三边对应成比例,两三角形相似(sss) 93 定理 如果一个直角三角形的斜边和一条直角边与另
46、一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 94 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 95 性质定理2 相似三角形周长的比等于相似比 96 性质定理3 相似三角形面积的比等于相似比的平方 97任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 98任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 圆99圆是定点的距离等于定长的点的集合 100圆的内部可以看作是圆心的距离小于半径的点的集合 101圆的外部可以看作是圆心的距离大于半径的点的集合 103同圆或等圆的半径相等 104
47、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 105和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 106到已知角的两边距离相等的点的轨迹,是这个角的平分线 107到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 108定理 不在同一直线上的三点确定一个圆。 109垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 110推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 111推论2 圆的两条平行弦所夹的
48、弧相等 112圆是以圆心为对称中心的中心对称图形 113定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 114推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 115定理 一条弧所对的圆周角等于它所对的圆心角的一半 116推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 117推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径 118推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 119定理 圆的内接四边形的对
49、角互补,并且任何一个外角都等于它的内对角 120直线l和o相交 dr 直线l和o相切 d=r 直线l和o相离 dr 121切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 122切线的性质定理 圆的切线垂直于经过切点的半径 123推论1 经过圆心且垂直于切线的直线必经过切点 124推论2 经过切点且垂直于切线的直线必经过圆心 125切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 126圆的外切四边形的两组对边的和相等 127弦切角定理 弦切角等于它所夹的弧对的圆周角 128推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 1
50、29相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 130推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 131切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 132推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 133如果两个圆相切,那么切点一定在连心线上 134两圆外离 dr+r 两圆外切 d=r+r 两圆相交 r-rdr+r(rr) 两圆内切 d=r-r(rr) 两圆内含dr-r(rr) 135定理 相交两圆的连心线垂直平分两圆的公共弦 136定理 把圆分成n(n3):
51、 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 137定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 138正n边形的每个内角都等于(n-2)×180°n 139定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 149正n边形的面积sn=pnrn2 p表示正n边形的周长 141正三角形面积3a²4( a表示边长) 142如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°n=
52、360°化为(n-2)(k-2)=4 143弧长计算公式:l=nr180 144扇形面积公式:s扇形=nr2360=lr2 145内公切线长= d-(r-r) 外公切线长= d-(r+r) 146等腰三角形的两个底脚相等 147等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合 148如果一个三角形的两个角相等,那么这两个角所对的边也相等 149三条边都相等的三角形叫做等边三角形 150两边的平方的和等于第三边的三角形是直角三角形 数学归纳法()第一数学归纳法: 一般地,证明一个与正整数n有关的命题,有如下步骤: (1)证明当n取第一个值时命题成立; (2)假设当n=k(kn的
53、第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。 (二)第二数学归纳法: 第二数学归纳法原理是设有一个与自然数n有关的命题,如果: (1)当n1回时,命题成立; (2)假设当nk时命题成立,则当nk+1时,命题也成立。 那么,命题对于一切自然数n来说都成立。 (三)螺旋归纳法: 螺旋归纳法是归纳法的一种变式,其结构如下: Pi和Qi是两组命题,如果: P1成立 Pi成立=>Qi成立 那么Pi,Qi对所有自然数i成立 利用第一数学归纳法容易证明螺旋归纳法是正确的 排列,组合·阶乘: n!=1×2×3××n,(n为不小于0的整
54、数) 规定0!=1。 ·排列 从n个不同元素中取m个元素的所有排列个数, A(n,m)= n!/(n - m)! (m是上标,n是下标,都是不小于0的整数,且mn) ··组合 从n个不同的元素里,每次取出m个元素,不管以怎样的顺序并成一组,均称为组合。所有不同组合的种数 C(n,m)= A(n,m)/m!=n!/m!·(nm)! (m是上标,n是下标,都是不小于0的整数,且mn) 组合数的性质: C(n,k) = C(n-1,k) + C(n-1,k-1); 对组合数C(n,k),将n,k分别化为二进制,若某二进制位对应的n为0,而k为1 ,则C(n,k)为偶数;否则为奇数 整次数二项式定理(binomial theorem) (a+b)n=C(n,0)×an×b0+C(n,1)×a(n-1)×b+C(n,2)×a(n-2)×b2+.+C(n,n)×a0×bn 所以,有 C(n,0)+C(n,1)+C(n,2)+.+C(n,n) =C(n,0)×1n+C(n,1)×1(n-1)×1+C(n,2)×1(n-2)×12+.+C(n,n)×1n =(1+1)n = 2n 微积分学极限的定义:设函数f(x)在点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋租赁合同违约处理
- 标准的建筑承包合同
- 手动叉车操作培训
- 《如何获得成功》课件 初中主题班会
- 《中国艾滋病防治》课件
- 大一新生规划书
- 电气用电安全培训
- 年产xxx矿产铝冶炼项目建议书
- 踏梯子项目可行性研究报告
- 年产xx智能浴缸项目可行性研究报告(项目计划)
- 昌邑石化重整开工方案(新)
- 麻醉科各种应急处理预案流程图
- 4第三章 电力系统运行的灵敏度分析及应用
- 圆锥曲线离心率专题训练
- 口腔科诊断证明书模板
- 保护性约束PPT通用课件
- GB∕T 41424.1-2022 皮革 沾污性能的测定 第1部分:翻滚法
- 中国传媒大学影视艺术学院录音系教学大纲汇总
- 故事《没有牙齿的大老虎》PPT课件
- 应力更新算法
- 10KV高压开关柜操作(培训课件)
评论
0/150
提交评论