常微分方程的实际应用_第1页
常微分方程的实际应用_第2页
常微分方程的实际应用_第3页
常微分方程的实际应用_第4页
常微分方程的实际应用_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、常微分方程的实际应用于萍摘要:常微分方程在当代数学中是极为重要的一个分支,它的实用价值很高,应用也很广泛,本文主要介绍常微分方程在几何、机械运动、电磁振荡方面的应用,并举例说明,体会常微分方程对解决实际问题的作用,在解决实际问题过程中通常是建立起实际问题的数学模型,也就是建立反映这个实际问题的微分方程,求解这个微分方程,用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。关键字:常微分方程,几何,机械运动,电磁振荡,应用Abstract: Nomal differential equation is an important part o

2、f math at it has a high practical value. This thesis shows the use in geometry, mechaics and electrothermal and makes some examples. Also, it summarizes the normal move of dealing with practical problems by the normal differential equation. Normal, we set up the maths matic model of the problem, sol

3、ute the normal differentical equation make the use of the result to explain practical problems and make a forecast of some special character of physical process.Key: Normal differetial equation geometry mechanics electrothermal use引 言数学分析中所研究的函数,是反映客观现实世界运动过程中量与量之间的一种关系,但在大量的实际问题中遇到稍为复杂的一些运动过程时,反映运动

4、规律的量与量之间的关系(即函数)往往不能直接写出来,却比较容易地建立这些变量和它们的导数(或微分)间的关系式,不同的物理现象可以具有相同的数学模型,这一事实正是现代许多应用数学工作者和工程人员应用模拟方法解决物理或工程问题的理论依据。例如,利用电路来模拟某些力学系统或机械等等在现时已相当普遍。在自然科学和技术科学的其他领域中,例如化学、生物学、自动控制、电力技术等等,都提出了大量的微分方程问题,因此,社会的生产实践是常微分方程理论取之不尽的基本源泉。此外,常微分方程与数学的其他分支的关系也是非常密切的。它们往往互相联系、互相促进。例如,几何学、机械运动、电磁振荡就是常微分方程理论的丰富的源泉之

5、一,常微分方程也是解决实际问题不可或缺的武器。一、常微分方程在几何学的应用在几何应用问题中,列的方程常常是含有变限定积分的方程。在求解时要化为相应的微分方程或微分方程初值问题。凡是能用定积分计算的量,一定分布在某个区间(比如)上,并且对于该区间具有可加性,曲边梯形的面积与区间有关,当把分成个部分区间时,则所求量也相应地分成个部分量,而就等于所有这些部分之和,即,这时我们就称面积对区间具有可加性,几何中的面积、弧长,曲线方程等都具有这种特性。在求解微分方程的应用问题时,列出方程是关键性的一步,一定要逐字逐句地仔细阅读题目,根据题目的要求确定未知函数和自变量,然后利用题设中指出的(或包含的)相等关

6、系列出方程,应用问题常常是初值问题。因而,要从题设中确定未知函数满足的初始条件。常微分方程在解决几何问题的过程中通常采用数形结合,达到简易直观的效果。利用表示曲线上点处的切线斜率或表示曲线上点的法线斜率以及表示由曲线,直线,轴所围图形的面积等方面的意义,列方程。解方程,在求解过程中一定要对常微分方程的解法熟悉于心,才能得心应手。首先要审视方程,判断方程类型,属于一阶微分方程还是可降阶微分方程或高阶微分方程等等。根据不同类型,确定解题方案。下面就让我们结合具体例题来体会常微分方程在解决几何问题的应用。例12、设是第一象限内连接点的一段连续曲线,为该曲线上任意一点,点为在轴上的投影。为坐标原点,若

7、梯形的面积与曲边三角形的面积之和为,求的表达式。解:根据题意有:且,将上式两边对求导数,得当时,可化为一阶线性微分方程:方程两边同除,即得积分可得于是,方程通解为把代入通解,可确定常数故所求函数的表达式为:例22、在上半平面求一条向上凹的曲线,其任一点处的曲率等于此曲线在该点的法线段长度的倒数,(Q是法线与轴的交点),且曲线在点处切线与轴平行。解:见图,所求曲线为,于是其在点处的曲率为:(曲线为凹的,)曲线在点处的法线方程:它与轴的交点的坐标,于是,由题设,即这是不显含的方程初始条件为,令,于是方程变为,代入,得,积分得代入,得故所求曲线为:,即例33、已知曲线过点,如果把曲线上任一点处的切线

8、与轴的交点记作,则以为直径所做的圆都经过点,求此曲线方程。解:见图所求曲线设为于是切线方程为切线与轴的交点的坐标为设点为切线段的中点,坐标为圆经过点于是得方程 令,则方程 (1)(2)令为的解,代入并整理,得故的通解为:即方程的通解为,代入初值,得故所求曲线为例41、在制造探照灯的反射镜面时,总是要求将点光源射出的光线平行地反射出去,以保证探照灯有良好的方向性,试求反射镜面的几何形状。解:取光源所在处为坐标原点,而轴平行于光的反射方向,(见图)。设所求曲面由曲线 绕轴旋转而成,则求反射镜面问题归结为求平面上的曲线的问题。过曲线上任一点作切线则由反射定律:入射角等于反射角,容易推知从而注意到及就

9、得到函数所满足的微分方程式这是齐次方程。设,将它化为变量分离方程求解得 为任意常数故反射镜面的形状为旋转抛物面二、常微分方程在机械振动中的应用常微分方程与物理联系甚为广泛,下面我们就一起来看一下常微分方程在机械振动中的应用,常微分方程解决力学问题需要:建立坐标系,对所研究物体进行受力分析;根据牛顿第二定律,列方程;解方程。下面,让我们从实例中体会常微分方程在力学中的作用。例12:一个质量为的船以速度行驶,在时,动力关闭,假设水的阻力正比于,其中为一常数,为瞬时速度,求速度与滑行距离的函数关系。解:船所受的净力=向前推力-水的阻力=,加速度=速度对时间的导数,即,于是,由题设有现在要求的不是速度

10、与时间的关系,而是速度与距离的关系,设距离为,于是,上述方程可化为: ()当时,两边积分,得把代入上式,得故当时,(),积分得,将初值代入,得故例22、两个质量相同的重物挂于弹簧下端,其中一个坠落,求另一个重物的运动规律,已知弹簧挂一个重物伸长为。解:如图所示,建立坐标系设弹簧自由状态时长度为,取处(即挂一重物时弹簧的长度)为坐标原点,取轴铅直向下,设在时刻,重物在处,由虎克定律知,此时弹性恢复力为为弹性系数,负号“”是因为弹性恢复力与位移反向,由牛顿第二定律有:挂两重物时,弹簧伸长,由虎克定律有:方程,其特征方程:于是方程通解为把初始条件代入以上两式得所求重物的运动规律为例31 数学摆是系于

11、一根长度为的线上而质量为的质点在重力作用下,它在垂直于地面的平面上沿圆周动运。如图所示,试确定摆的运动方程。 解:设取反时针运动的方向作为计算摆与铅垂线所成的角的正方向,质点沿圆周的切向速度可以表为作用于质点的重力将摆拉回平衡位置。把重力分解为两个分量和,第一个分量沿着半径的方向,与线的拉力相抵消,它不会引起质点的速度的数值改变,因为总是使质点向着平衡位置的方向运动,即当角为正时,向减小的方向运动,当角为负时,向增大的方向运动,所以的数值等于,因此,摆的运动方程是,即。(1)如果只研究摆的微小振动,即当比较小时的情况,我们可以取的近似值代入上式,这样就得到微小振动时摆的运动方程:(2)如果我们

12、假设摆是在一个粘性的介质中摆动,那么,沿摆的运动方向就存在一个与速度成比例的阻力,若阻力系数为,则摆动方程为。(3)如果沿摆的运动方向恒有一个外力作用于它,这时摆的运动称为强迫微小振动,其方程为:。当要确定摆的某一个特定运动时,我们应给出摆的初始状态:当时,。这里代表摆的初始位置,代表初始角速度。例43:生产实践中很多机械问题都归结为弹性振动问题,下面便是一个弹簧振动的典型例子。设有弹性系数而自然长度为的弹簧竖着悬挂着。它的上端固定,下端悬挂,一个质量为的物体,物体受到垂直干扰力,求物体的运动规律所满足的微分方程。解:如图所示,取通过悬挂点的直线为轴,向下记为正方向,原点取在系统平衡位置,为确

13、定物体运动规律,先分析它的位置,处的受力情况。(1) 弹簧弹性力,依虎克定律,其中为弹簧在物体重力作用下的伸长量。(2) 物体所受重力(3) 介质阻力与物体运动速度成正比,与运动方向相反,其中为常数,称为阻尼系数。(4) 重力干扰力因此,这时物体所受合外力再由牛二定律,得方程:由于系统的平衡位置处,弹性力与重力平衡,故有于是上述方程写成 若记, 则可写成 这就是该物体在外力作用下运动规律。所满足的微分方程若物体振动过程中,未受外力干扰,即,则微分方程三、常微分方程在电磁振荡中的应用建立起实际问题的数学模型一般是比较困难的,因为这需要对与问题有关的自然规律有一个清晰的了解,如前面所求的力学问题就

14、要对牛二定律有清楚的认识,同时也需要有一定的数学知识,为了要建立起实际问题的数学模型,一定要学习有关的自然科学和工程技术的专业知识,微分方程往往可以看作是各种不同物理现象的数学模型,我们在建立微分方程的时候,只能考虑影响这个物理现象的一些主要因素,而把其它一些次要因素忽略掉,如果的确考虑到了那些最主要的因素,那么,我们所得到的微分方程,它的解和所考虑的物理现象就是比较接近的,这时,我们得到的数学模型是有用的,否则,我们还应考虑其它一些因素,以便建立起更为合理的数学模型,为了解决热电学问题,需要了解其中的一些基本规律,如下面将用到牛顿冷却定律,其内容为热量总是从物体中温度高的向温度低的物体传导;

15、在一定温度范围内,一个物体的温度变化速度与这一物体的温度和其所在介质温度差值成比例,等等,我们将在实例中一一解答。常微分方程解决电磁振荡问题通常建立起电热学问题的数学模型,也就是反映这个实际问题的微分方程。求解这个微分方程。用所得的数学结果解释实际问题,从而预测到某些物理过程的特定性质,以便达到能动地改造世界,解决实际问题的目的。接下来,就让我们从实例中体会常微分方程在电热方面的应用。例11. 电路,如图,它包含电感,电阻和电源,设时,电路中没有电流,我们要求建立:当开关闭合后,电流应该满足的微分方程,假设都是常数。解:为了建立电路的微分方程,我们引用关于电路的基尔霍夫第二定律:在闭合回路中,

16、所有支路上的电压的代数和等于零。注意到经过电阻的电压降是,而经过电感的电压降是,由基尔霍夫第二定律得到。即求出的应满足条件:当时,如果假定在时,电源突然短路,因而变为零,此后亦保持为零,那么电流满足方程。,及条件时,例21 电路,如图所示,它包括电感,电阻和电容,设均为常数,电源是时间的已知函数,我们要求建立:当开关闭合后,电流应满足的微分方程。解:注意到经过电感,电阻和电容的电压降分别为,和,其中为电量,因此由基尔霍夫第二定律得到 ,微分上式得到这就是电流应满足的微分方程,如果=常数,得到如果又有,则得到例31. 电容器的充电和放电,如图所示电路,开始时电容上没有电荷,电容两端电压为零,我们

17、把开关闭合“1”后,电池就对电容充电,电容两端电压逐渐升高,经过相当时间后,电容充电完毕,我们再把开关合上“2”,这时电容就开始放电过程,现在要求找出充、放电过程中,电容两端的电压随时间的变化规律。解:对于充电过程,由闭合回路的基尔霍夫第二定律有 对电容充电时,电容上的电量逐渐增多,根据得到: 将代入,得满足的微分方程: 这里都是常数,方程属于变量分离方程,将变量分离得到两边积分,得到即这里为任意常数。将初始条件:时,代入得到 这就是电路充电过程电容两端的电压变化规律,由知道,电压从零开始逐渐增大,且当时,在电工学中,通常称为时间常数,当时,就是说,经过的时间后,电容上的电压已达到外加电压的95%,实际上,通常认为这时电容的充电过程已基本结束,易见充电结果,对于放电过程,可以类似地进行。例41将某物体放置于空气中,在时刻时,测量它的温度为,10分钟后测量得温度为,我们要求决定此物体的温度和时间的关系,并计算20分钟后物体的温度,这里假定空气的温度保持为。解:设物体在时刻的温度为,则温度的变化速度以来表示,根据牛顿冷却定律知,热量总是从温度高的物体向温度低的物体传导,所以温差为正,又物体将随时间而逐渐冷却,故温度变化速度恒为负,因此由牛顿冷却定律得到 这里是比例常数式就是物体冷却过程数学模型,为了决定物体的温度和时间的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论