下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第2课时:整式(2)教学内容:教科书第5659页,2.1整式:2多项式。教学目标和要求:1通过本节课的学习,使学生掌握整式多项式的项及其次数、常数项的概念。2通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于学生知识的迁移和知识结构体系的更新。3初步体会类比和逆向思维的数学思想。教学重点和难点:重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。难点:多项式的次数。教学方法:分层次教学,讲授、练习相结合。教学过程:一、复习引入:1列代数式:(1)长方形的长与宽
2、分别为a、b,则长方形的周长是 ;(2)某班有男生x人,女生21人,则这个班共有学生 人;(3)图中阴影部分的面积为_;(4)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。)2观察以上所得出的四个代数式与上节课所学单项式有何区别。(1)2(ab) ; (2)21x ; (3)ab ; (4)2a4b 。(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、归纳的能力,同时又锻炼他们的口表能力。通过特征的讲述,由学生自己归纳出多项
3、式的定义,教室可给予适当的提示及补充。)二、讲授新课:1多项式:板书由学生自己归纳得出的多项式概念。上面这些代数式都是由几个单项式相加而成的。像这样,几个单项式的和叫做多项式(polynomial)。在多项式中,每个单项式叫做多项式的项(term)。其中,不含字母的项,叫做常数项(constant term)。例如,多项式有三项,它们是,2x,5。其中5是常数项。一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式是一个二次三项式。注意:(1)多项式的次数不是所有项的次数之和;(2)多项式的每一项都包括它前面的符号。(教师介绍多项式的项和次数、以及常数
4、项等概念,并让学生比较多项式的次数与单项式的次数的区别与联系,渗透类比的数学思想。)2例题:例1:判断:多项式a3a2ab2b3的项为a3、a2、ab2、b3,次数为12;多项式3n42n21的次数为4,常数项为1。(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应为a2b、b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)例2:指出下列多项式的项和次数:(1)3x13x2; (2)4x32x2y2。解:略。例3:指出下列多项式是几次几项式。(1)x3x1; (2)x32x2y
5、23y2。解:略。例4:已知代数式3xn(m1)x1是关于x的三次二项式,求m、n的条件。解:略。(让学生口答例2、例3,老师在黑板上规范书写格式。讲述例2时应特别提醒学生注意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。在例3讲完后插入整式的定义:单项式与多项式统称整式(integral expression)。例4分析时要紧扣多项式的定义,培养学生的逆向思维,使学生透彻理解多项式的有关概念,培养他们应用新知识解决问题的能力。)通过其中的反例练习及例题,强调应注意以下几点:6课堂练习:课本p59:1,2。填空:a2bab1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为
6、,写出所有的项 。已知代数式2x2mnx2y2是关于字母x、y的三次三项式,求m、n的条件。三、课堂小结:理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几项组成,各项的系数分别为多少,常数项为几。这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。(让学生小结,师生进行补充。)四、课堂作业: 课本p60:3板书设计: 多项式1多项式的定义: 2例: 例: 学生练习: 教学后记:从学生已掌握的列代数式入手,既复习了所学知识,又巧妙的引入了新知,介绍多项式的项、次数以及常数项的概念后,引导学生循序渐进,一步一步的接近本节课学习的重点、难点。掌握了所有的概念后由学生自己举一些多项式的例子,这样更能反映出学生掌握知识的程度,同时也体现了学生学习的主体性。最后列举几个例子,与学生一起完成。教学中一方面教师要示范严格的书写格式,另一方面也可使学生顺着教师的思
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南文理学院《程序设计基础(C语言)》2021-2022学年第一学期期末试卷
- 湖南科技学院《数据通信与计算机网络》2021-2022学年第一学期期末试卷
- 2024至2030年中国洗衣机四角板焊机行业投资前景及策略咨询研究报告
- 2024至2030年中国抽纱家纺产品行业投资前景及策略咨询研究报告
- 2024年中国赛丽珠市场调查研究报告
- 2024至2030年中国高效蒸洗机行业投资前景及策略咨询研究报告
- 2024至2030年中国铁制佛帽行业投资前景及策略咨询研究报告
- 2024至2030年中国精密片机行业投资前景及策略咨询研究报告
- 2024至2030年高效复式真空滤油机项目投资价值分析报告
- 2024至2030年中国无纺布锁绳袋行业投资前景及策略咨询研究报告
- 带状疱疹的护理查房课件
- 顺丰快递公司视觉识别VI手册(清晰电子版)
- 处方点评与合理用药-PPT课件
- 羊奶培训手册
- XX某管道工程通信线路光缆施工组织设计
- 《First aid》(课堂PPT)
- 《生命教育》教学大纲
- 初中义务教育英语新课标必背词汇表
- 2.3 肉质根的形成生理生理ppt课件
- 逻辑电平测试器的课程设计报告书
- 解析几何课件(吕林根+许子道第四版)
评论
0/150
提交评论