弹簧类六大问题的求解应用(共5页)_第1页
弹簧类六大问题的求解应用(共5页)_第2页
弹簧类六大问题的求解应用(共5页)_第3页
弹簧类六大问题的求解应用(共5页)_第4页
弹簧类六大问题的求解应用(共5页)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上弹簧类六大问题的求解应用朱金军 (温州中学 浙江 )有关弹簧的题目在高考中几乎年年出现,由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型和进行分门别类,导致解题思路不清、效率低下,错误率较高。下面我们归纳六类问题探求解法。一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为轻弹簧,是一种常见的理想化物理模型。由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。弹簧一端受力为F,另一端受力一

2、定也为F。若是弹簧秤,则弹簧秤示数为F。例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F1,所以弹簧秤的读数为F1说明 F2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突

3、变。例2、如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A、B、C的质量之比是123设所有接触面都光滑,当沿水平方向迅速抽出木块C的瞬时,木块A和B的加速度分别是aA=_ ,aB=_ 分析与解 由题意可设A、B、C的质量分别为m、2m、3m以木块A为研究对象,抽出木块C前,木块A受到重力和弹力一对平衡力,抽出木块C的瞬时,木块A受到重力和弹力的大小和方向均没变,故木块A的瞬时加速度为0以木块AB为研究对象,由平衡条件可知,木块C对木块B的作用力FcB=3mg以木块B为研究对象,木块B受到重力、弹力和FcB三力平衡,抽出木块C的瞬时,木块B受到重力和弹力的大小和方向均没变

4、,FcB瞬时变为0,故木块C的瞬时合外力为竖直向下的3mg。瞬时加速度为1.5g说明 区别不可伸长的轻质绳中张力瞬间可以突变三、弹簧长度的变化问题设劲度系数为k的弹簧受到压力为1时压缩量为1,弹簧受到拉力为2时伸长量为,此时的“”号表示压缩的含义。若弹簧受力由压力变为拉力,弹簧长度将由压缩量变为伸长量为,长度增加量为由胡克定律有:()()()即:说明弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时表示的物理含义是弹簧长度的改变量,并不是形变量。例、如图所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接

5、),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了_,物块1的重力势能增加了_.分析与解 由题意可知:弹簧长度的增加量就是物块的高度增加量,弹簧长度的增加量与弹簧长度的增加量之和就是物块的高度增加量,由物体的受力平衡可知:弹簧的弹力将由原来的压力()变为;弹簧的弹力将由原来的压力变为拉力,弹力改变量也为()。所以、弹簧的伸长量分别为(m1+m2)g和(m1+m2)g故物块2的重力势能增加了m2(m1+m2)g2,物块1的重力势能增加了()m1(m1+m2)g2四、弹力变化的运动过程分析弹簧的弹力是一种由形变而决定大小和方

6、向的力,当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关。以此来分析计算物体运动状态的可能变化结合弹簧振子的简谐运动,分析涉及到弹簧物体的变加速度运动,往往能达到事半功倍的效果。此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动。结合与平衡位置对应的回复力、加速度、速度的变化规律,则很容易分析物体的运动过程例4、如图所示,质量为m的物体A用一轻弹簧与下方地面上

7、质量也为m的物体B相连,开始时A和B均处于静止状态,此时弹簧压缩量为x0,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A、另一端C握在手中,各段绳均处于刚好伸直状态,A上方的一段绳子沿竖直方向且足够长。现在C端施 水平恒力F而使A从静止开始向上运动。(整个过程弹簧始终处在弹性限度以内) (1)如果在C端所施恒力大小为3mg,则在B物块刚要离开地面时A的速度为多大? (2)若将B的质量增加到2m,为了保证运动中B始终不离开地面,则F最大不超过多少?分析与解 由题意可知:弹簧开始的压缩量,在B物块刚要离开地面时弹簧的伸长量也是(1)若F=3mg,在弹簧伸长到x0时,B开始离开地面,此时弹簧弹性势能与

8、施力前相等,F所做的功等于A增加的动能及重力势能的和。即 可解得: (2)所施力为恒力F0时,物体B不离开地面,类比竖直弹簧振子,物体A在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力。故物体A做简谐运动。在最低点: F0mg+kx0=ma1 式中k为弹簧劲度系数,a1为在最低点A的加速度。 在最高点,B恰好不离开地面,此时弹簧被拉伸,伸长量为2x0,则: K(2x0)+mgF0=ma2 考虑到: kx0=mg 简谐运动在上、下振幅处 a1=a2 解得:F0=也可以利用简谐运动的平衡位置求恒定拉力F0。物体A做简谐运动的最低点压缩量为x0,最高点伸长量为2x0,则上下运动中点为平衡位置,

9、即伸长量为所在处。由: 解得:F0=说明 区别原长位置与平衡位置。与原长位置对应的形变量与弹力大小、方向、弹性势能相关;与平衡位置对应的位移量与回复大小、方向、速度、加速度相关。五、与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及到一些临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两物体速度达到相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等等。此类题的解题关键是利用好临界条件,得到解题有用的物理量和结论例5、如图所示,A、B两木块叠放在竖直轻弹簧上,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m ,若在木块A上作用一个竖直

10、向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功。分析与解此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有 对A施加F力,分析A、B受力如右图所示对A 对B 可知,当N0时,AB有共同加速

11、度a=a,由式知欲使A匀加速运动,随N减小F增大.当N=0时,F取得了最大值Fm,即又当N=0时,A、B开始分离,由式知,此时,弹簧压缩量 AB共同速度 由题知,此过程弹性势能减少了WP=EP=0.248 J设F力功WF,对这一过程应用功能原理 联立,且注意到EP=0.248 J 可知,WF=9.6410-2 J六、弹力做功与弹性势能的变化问题弹簧弹力做功等于弹性势能的减少量。弹簧的弹力做功是变力做功,求解一般可以用以下四种方法:1、因该变力为线性变化,可以先求平均力,再用功的定义进行计算;2、利用F图线所包围的面积大小求解;、用微元法计算每一小段位移做功,再累加求和;、据动能定理和能量转化和

12、守恒定律求解。由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。特别是涉及到两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消,或替代求解。例、如图所示,挡板P固定在足够高的水平桌面上,小物块A和B大小可忽略,它们分别带为+QA和+QB的电荷量,质量分别为和。两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B连接,另一端连接轻质小钩。整个装置处于场强为E、方向水平向左的匀强电场中,A、B开始时静止,已知弹簧的劲度系数为k,不计一切摩擦及A、B间的库仑力,A、B所带电荷量保持不变,B不会碰到滑轮。 (1)若在小钩上挂质量为M的物块C并由静止释放,可使物块A对挡板P的压力恰为零,但不会离开P,求物块C下降的最大距离 (2)若C的质量为2M,则当A刚离开挡板P时,B的速度多大?分析与解通过物理过程的分析可知:当A刚离开挡板P时,弹力恰好与所受电场力平衡,弹簧伸长量一定,前后两次改变物块质量,在第问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解。设开始时弹簧压缩量为x1由平衡条件:可得 设当A刚离开档板时弹簧的伸长量为:由:可得故C下降的最大距离为:由式可解得 (2)由能量转

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论