版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.如图,RtACB中,ACB=90°,ABC的角平分线AD、BE相交于点P,过P作PFAD交BC的延长线于点F,交AC于点H,则下列结论:APB=135°;PF=PA;AH+BD=AB;S四边形ABDE=SABP,其中正确的是()ABCD2.如图:ABC中,ACB=90°,CAD=30°,AC=BC=AD,CECD,且CE=CD,连接BD,DE,BE,则下列结论:ECA=165°,BE=BC;ADBE;=1其中正确的是()ABCD3.在ABC中,ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,下列结论:FC
2、D=45°,AE=EC,SABF:SAFC=BD:CD,若BF=2EC,则FDC周长等于AB的长正确的是()ABCD4.如图,将30°的直角三角尺ABC绕直角顶点A逆时针旋转到ADE的位置,使B点的对应点D落在BC边上,连接EB、EC,则下列结论:DAC=DCA;ED为AC的垂直平分线;EB平分AED;ED=2AB其中正确的是()ABCD5.如图,在ABC中,AC=BC,ACB=90°,AE平分BAC交BC于E,BDAE于D,DMAC交AC的延长线于M,连接CD,给出四个结论:ADC=45°;BD=AE;AC+CE=AB;AB-BC=2MC;其中正确的结
3、论有()A1个B2个C3个D4个6.如图,已知ABC中,ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为板块二、全等与角度【例8】在等腰中,顶角,在边上取点,使, 求.【例9】 如图所示,在中,又在上,在上,且满足,求.【例10】 在四边形中,已知,求的度数.【例11】 如图所示,在四边形中,求的度数.【例12】 在正内取一点,使, 在外取一点,使,且,求.【例13】 如图所示,在中,为内一点,使得,求的度数.五、旋转例1 正方形ABCD中,E为BC上的一点,F为CD上的一点,BE+DF=EF,求EAF的度数.例2 D为等腰斜边AB的中点,DMDN,DM,DN分别
4、交BC,CA于点E,F。(1) 当绕点D转动时,求证DE=DF。(2) 若AB=2,求四边形DECF的面积。例3 如图,是边长为3的等边三角形,是等腰三角形,且,以D为顶点做一个角,使其两边分别交AB于点M,交AC于点N,连接MN,则的周长为 ;3、在等边的两边AB、AC所在直线上分别有两点M、N,D为外一点,且,BD=DC. 探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及的周长Q与等边的周长L的关系图1 图2 图3(I)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是 ; 此时 ; (II)如图2,点M、N边AB、AC上,且当D
5、MDN时,猜想(I)问的两个结论还成立吗?写出你的猜想并加以证明; (III) 如图3,当M、N分别在边AB、CA的延长线上时,若AN=,则Q= (用、L表示)第四章 一次函数1设在某个变化过程中有两个变量x和y,如果对于变量x取值范围内的_,另一个变量y都有_的值与它对应,那么就说_是自变量,_是的函数2设y是x的函数,如果当xa时,yb,那么b叫做当自变量的值为_时的_3对于一个函数,在确定自变量的取值范围时,不仅要考虑_有意义,而且还要注意问题的_4飞轮每分钟转60转,用解析式表示转数n和时间t(分)之间的函数关系式:(1)以时间t为自变量的函数关系式是_(2)以转数n为自变量的函数关系
6、式是_5某商店进一批货,每件5元,售出时,每件加利润0.8元,如售出x件,应收货款y元,那么y与x的函数关系式是_,自变量x的取值范围是_6已知5x2y70,用含x的代数式表示y为_;用含y的代数式表示x为_7已知函数y2x21,当x13时,相对应的函数值y1_;当时,相对应的函数值y2_;当x3m时,相对应的函数值y3_反过来,当y7时,自变量x_8已知根据表中 自变量x的值,写出相对应的函数值x432101234y二、求出下列函数中自变量x的取值范围1011121314151617综合、运用、诊断一、选择题18在下列等式中,y是x的函数的有( )3x2y0,x2y21,A1个B2个C3个D
7、4个19设一个长方体的高为10cm,底面的宽为xcm,长是宽的2倍,这个长方体的体积V(cm3)与长、宽的关系式为V20x2,在这个式子里,自变量是( )A20x2B20xCVDx20电话每台月租费28元,市区内电话(三分钟以内)每次0.20元,若某台电话每次通话均不超过3分钟,则每月应缴费y(元)与市内电话通话次数x之间的函数关系式是( )Ay28x0.20By0.20x28xCy0.20x28Dy280.20x二、解答题21已知:等腰三角形的周长为50cm,若设底边长为xcm,腰长为ycm,求y与x的函数解析式及自变量x的取值范围22某人购进一批苹果到集市上零售,已知卖出的苹果x(千克)与
8、销售的金额y元的关系如下表:x(千克)12345y(元)2+0.14+0.26+0.38+0.410+0.5(1)写出y与x的函数关系式:_;(2)该商贩要想使销售的金额达到250元,至少需要卖出多少千克的苹果?拓展、探究、思考23用40m长的绳子围成矩形ABCD,设ABxm,矩形ABCD的面积为Sm2,(1)求S与x的函数解析式及x的取值范围;(2)写出下面表中与x相对应的S的值:x899.51010.51112S(3)猜一猜,当x为何值时,S的值最大?(4)想一想,如果打算用这根绳子围成的面积比(3)中的还大,应围成么样的图形?并算出相应的面积 函数的图象2用“描点法”分别画出下列各函数的
9、图象(1)x642024y解:函数的自变量x的取值范围是_(2)3如图21,下面的图象记录了某地一月份某大的温度随时间变化的情况,请你仔细观察图象回答下面的问题:图21(1)在这个问题中,变量分别是_,时间的取值范围是_;(2)20时的温度是_,温度是0的时刻是_时,最暖和的时刻是_时,温度在3以下的持续时间为_小时;(3)你从图象中还能获得哪些信息?(写出12条即可)答:_综合、运用、诊断一、选择题4图22中,表示y是x的函数图象是()图225如图23是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()图23A39.0B38.2C38.5D37.86如图24,某游客为爬上3千米的
10、山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是( )图24二、填空题7星期日晚饭后,小红从家里出去散步,图25所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了依据图象回答下列问题图25(1)公共阅报栏离小红家有_米,小红从家走到公共阅报栏用了_分;(2)小红在公共阅报栏看新闻一共用了_分;(3)邮亭离公共阅报栏有_米,小红从公共阅报栏到邮亭用了_分;(
11、4)小红从邮亭走回家用了_分,平均速度是_米秒三、解答题8已知:线段AB36米,一机器人从A点出发,沿线段AB走向B点(1)求所走的时间t(秒)与其速度V(米秒)的函数解析式及自变量V的取值范围;(2)利用描点法画出此函数的图象正比例函数一、填空题1形如_的函数叫做正比例函数其中_叫做比例系数2可以证明,正比例函数ykx(k是常数k0)的图象是一条经过_点与点(1,_的_,我们称它为_3如图31,当k0时,直线ykx经过_象限,从左向右_,因此正比例函数y kx,当k0时,y随x的增大而_;当k0时,直线ykx经过_象限,从左向右_,因此正比例函数ykx,当k0时,y随x的增大反而_图314若
12、直线ykx经过点A(5,3),则k _如果这条直线上点A的横坐标xA4,那么它的纵坐标yA_5若是函数ykx的一组对应值,则k_,并且当x5时,y_;当y2时,x_二、选择题6下列函数中,是正比例函数的是( )Ay2xBCyx2Dy2x17如图32,函数yx(x0)的图象是()图328函数y2x的图象一定经过下列四个点中的( )A点(1,2)B点(2,1)C点D点9如果函数y(k2)x为正比例函数,那么( )Ak0Bk2Ck为实数Dk为不等于2的实数10如果函数是正比例函数,那么( )Am2或m0Bm2Cm0Dm1综合、运用、诊断一、解答题11若规定直角坐标系中,直线向上的方向与x轴的正方向所成的角叫做直线的倾斜角请在同一坐标系中,分别画出各正比例函数的图象,它们各自的倾斜角是锐角还是钝角?比例系数k对其倾斜角有何影响?(1)(2)12有一长方形AOBC纸片放在如图33所示的坐标系中,且长方形的两边的比为OA:AC2:1.(1)求直线OC的解析式;(2)求出x5时,函数y的值;(3)求出y5时,自变
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年华东师大版七年级科学下册月考试卷含答案
- 2025-2030年中国PBT树脂行业市场十三五规划及发展策略研究报告
- 2025-2030年中国CT机行业需求状况与投资战略研究报告
- 个人不动产抵押融资协议规范文本选集版A版
- 2025年仁爱科普版八年级地理下册阶段测试试卷
- 2025年沪教新版九年级化学下册月考试卷
- 2025年上外版二年级语文下册阶段测试试卷含答案
- 2025年湘师大新版八年级生物上册月考试卷
- 浙教版八年级数学下册《3.1平均数》同步测试题含答案
- 2025年人教新课标九年级物理上册阶段测试试卷含答案
- 《建筑工程设计文件编制深度规定》(2022年版)
- 工程项目计价结算付款情况统计表
- GB/T 20554-2024海带
- 广东广州中医药大学第一附属医院招聘笔试真题2022
- ISO 15189医学实验室认可内审员培训试题附答案
- 简易自动化培训
- 高速公路交通安全设施设计及施工技术规范-JTJ-074-94
- 第八届“雄鹰杯”小动物医师技能大赛备考试题库(含答案)
- (正式版)JBT 14587-2024 胶体铅酸蓄电池 技术规范
- 旗袍行业大数据研究报告
- 2022聚脲防水涂料应用技术规程
评论
0/150
提交评论