行程问题之平均速度_第1页
行程问题之平均速度_第2页
行程问题之平均速度_第3页
行程问题之平均速度_第4页
行程问题之平均速度_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第四讲 行程问题之平均速度1、概念物体的路程和通过这段路程所用时间的比,叫做这段路程的平均速率。( 对运动的物体,平均速率不可能为零)平均速率=路程/时间平均速率在习惯上称平均速度.2、典型例题【例1】 、从山顶到山脚的路长36 千米,一辆汽车上山,需要4 小时到达山顶,下山沿原路返回,只用了2小时到达山脚。求这辆汽车往返的平均速度。【例2】 、 12 个人拿了8 把铁锹去挖花池,采取“歇人不歇马”的办法一共干了 6 小时,平均每人挖了几小时【例3】 、金瑟往返于相距36 里的东西两地,由东地去西地每小时走里,从西地回东地比来时少用一小时,他往返的平均速度是多少【例4】 、赵兵骑自行车去某地,

2、一天平均每小时行36 里。已知他上午平均每小时行40 里,骑了3 小时就休息了;下午平均每小时行33 里,他下午骑了几小时5】 、小宁去爬山, 上山时每小时行3 千米 , 原路返回时每小时行5 千米 . 求小宁往返的平均速度。【例6】 、在 300 米的环形跑道上,甲乙两人并行起跑,甲速是每秒5 米,乙速是每秒米,以这样的平均速度计算,再次相遇时经过几秒钟相遇地点在起跑线前面多少米【例7】、车要走2英里的路,上山及下山各 1英里,上山时平均速度每小时15英哩问当它下山走第二个英里的路时要多快才能达到每小时30英里分析:这是平均速度的题目。而我一再强调,平均速度和速度的平均数是两个不同的概念。速

3、度的平均数是指:这些速度整体水平。它的公式是:把这些速度加起来除以他们的个数,求出的是 平均值而已!而平均速度是指,在整个过程中的快慢程度,它的公式是:总路程除以总时间!这道题路程已经告诉你了,而整个过程的平均速度也告诉你了,你完全可以求出整个时间然后根据时间,可以求出走第二个英里的时间,从而求出下山的速度!【例8】、一个车队以4米/秒的速度缓缓通过一座长 200米的大桥,共用115秒。已知每辆车长 5米,两 车间隔10米。问:这个车队共有多少辆车分析与解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程 =时间X速度”可求出车队 115秒行

4、的路程为4X 115=460 (米)。故车队长度为460-200=260 (米)。再由植树问题可得车队共有车(260-5) + ( 5+10) +1=18 (辆)。【例9】、骑自行车从甲地到乙地,以10千米/时的速度行进,下午1点到;以15千米/时的速度行进,上午11点到。如果希望中午12点到,那么应以怎样的速度行进分析与解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没有路程,似乎无法求速度。这就需要通过已知条件,求出时间和路程。假设A, B两人同时从甲地出发到乙地, A每小时行10千米,下午1点到;B每小时行15千米,上午 11点到。B到乙地时,A距乙地还有10X2=20

5、 (千米),这20千米是B从甲地到乙地这段时间 B比A多行 的路程。因为B比A每小时多行15-10=5 (千米),所以B从甲地到乙地所用的时间是20+ (15-10 ) =4 (时)。由此知,A, B是上午7点出发的,甲、乙两地的距离是15X 4=60 (千米)。要想中午12点到,即想(12-7=) 5时行60千米,速度应为60+ (12-7) =12 (千米/时)。【例10】、划船比赛前讨论了两个比赛方案。第一个方案是在比赛中分别以米/秒和米/秒的速度各划行赛程的一半;第二个方案是在比赛中分别以米 /秒和米/秒的速度各划行比赛时间的一半。这两个方案哪个好分析与解:路程一定时,速度越快,所用时

6、间越短。在这两个方案中,速度不是固定的,因此不好直接比较。在第二个方案中,因为两种速度划行的时间相同,所以以米/秒的速度划行的路程比以米/秒的速度划行的路程长。用单线表示以米 /秒的速度划行的路程,用双线表示以米/秒的速度划行的路程,可画出下图所示的两个方案的比较图。其中,甲段+乙段=丙段。甲府在甲、丙两段中,两个方案所用时间相同;在乙段,因为路程相同,且第二种方案比第一种方案速度 快,所以第二种方案比第一种方案所用时间短。综上所述,在两种方案中,第二种方案所用时间比第一种方案少,即第二种方案好。3、课后练习1、甲乙两辆汽车同时从东西两地相向开出,已知快车每小时走40公里,经过 3小时,快车已

7、驶过中点25公里,这时与慢车还相距 7公里,求慢车的速度是多少2、两辆汽车上午8点分别从相距210公里的甲乙两地相向而行,第一辆汽车在途中修车停了45分钟,第二辆车加油停了半小时, 结果中午11点钟两车相遇。如果第一辆车的速度是每小时 40公里,那么第二辆 车的速度是多少3、匚,J(2)小明到均将点后,小敏再跑 (分钟才能到达跨点o(孔小明的平均速度是八(4)并好赛跑(1分后两人相距1典半.4、小燕上学时骑车,回家时步行,路上共用50分钟。若往返都步行,则全程需要 70分钟。求往返都骑车需要多少时间。5、某人要到60千米外的农场去,开始他以5千米/时的速度步行,后来有辆速度为 18千米/时的拖

8、拉机把他送到了农场,总共用了时。问:他步行了多远6、已知铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒。求火车的速度和长度。7、小红上山时每走 30分钟休息10分钟,下山时每走 30分钟休息5分钟。已知小红下山的速度是上山速度的倍,如果上山用了 3时50分,那么下山用了多少时间8、汽车以72千米/时的速度从甲地到乙地, 到达后立即以48千米/时的速度返回甲地。求该车的平均速度。X 9、小明去爬山,上山时每小时行千米,下山时每小时行4千米,往返共用时。问:小明往返一趟共行了多少千米分析与解:因为上山和下山的路程相同, 所以若能求

9、出上山走1千米和下山走1千米一共需要的时间, 则可以求出上山及下山的总路程。因为上山、下山各走1千米共需1】 B,- 4 (时92.5 4 20所以上山、下山的总路程为132X G” 短 =121千米兀=总路程+总时间在行程问题中,还有一个平均速度的概念:平均速度 例如,题中上山与下山的平均速度是127.9$壬米/时)o化、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50, 20, 40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米解:设等边三角形的边长为l厘米,则蚂蚁爬行一周需要的时间为1 1 1+5Q 20 30=ix c +-1-3 =(分)a 50 20 30300蚂

10、蚁爬行一周平均每分钟爬行“翡=2哈|管,蚂蚊爬行一周平均每分钟爬行29、厘米。1、 骑自行车从甲地到乙地,以 10千米/时的速度行进,下午 1点到;以15千米/时的速度行进,上午 11点至上 如果希望中午12点到,那么应以怎样的速度行进2、一只蚂蚁沿等边三角形的三条边爬行,如果它在三条边上每分钟分别爬行50, 20, 40厘米,那么蚂蚁爬行一周平均每分钟爬行多少厘米3、一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。已知每辆车长 5米,两车间隔10米。问:这个车队共有多少辆车行程问题之平均速度训练题答案1、解:这道题没有出发时间,没有甲、乙两地的距离,也就是说既没有时间又没

11、有路程,似乎无法求速度。这 就需要通过已知条件,求出时间和路程。假设A, B两人同时从甲地出发到乙地, A每小时行10千米,下午1点到;B每小时行15千米,上午11点到。 B到乙地时,A距乙地还有10X2=20(千米),这20千米是B从甲地到乙地这段时间 B比A多行的路程。因为 B 比A每小时多行15-10=5(千米),所以B从甲地到乙地所用的时间是20+(15-10)=4(时)。由此知,A, B是上午7点出发的,甲、乙两地的距离是15 X 4=60(千米)。要想中午12点到,即想(12-7=)5时行60千米,速度应为60+(12-7)=12(千米/时)。2、解:设等边三角形的边长为 l厘米,

12、则蚂蚁爬行一周需要的时间为蚂蚁爬行一周平均每分钟爬行3、解:求车队有多少辆车,需要先求出车队的长度,而车队的长度等于车队115秒行的路程减去大桥的长度。由“路程=时间X速度”可求出车队 115秒行的路程为4X 115=460(米)。故车队长度为 460-200=260(米)。再由植树问题可得车队共有车(260-5) +(5+10)+1=18(辆)。一个人在铁道边,听见远处传来的火车汽笛声后,在经过 57秒 火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的), 声音每秒传340米,求火车的速度(得出保留整数)答案为22米/秒算式:1360+(1360+340+57) =22 米/秒关键

13、理解:人在听到声音后 57秒才车到,说明人听到声音时车 已经从发声音的地方行出 1360+ 340= 4秒的路程。也就是1360 米一共用了 4+57= 61秒。7 .猎犬发现在离它10米远的前方有一只奔跑着的野兔, 马上紧 追上去,猎犬的步子大,它跑 5步的路程,兔子要跑9步,但是 兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至 少跑多少米才能追上兔子。正确的答案是猎犬至少跑 60米才能追上。解:由“猎犬跑 5 步的路程,兔子要跑9 步”可知当猎犬每步 a 米,则兔子每步5/9 米。 由“猎犬跑 2 步的时间,兔子却能跑3 步”可知同一时间,猎犬跑 2a米,兔子可跑5/9a*3 =

14、 5/3a米。从而 可知猎犬与兔子的速度比是2a: 5/3a=6: 5,也就是说当猎犬跑 60 米时候,兔子跑50 米,本来相差的10 米刚好追完9.甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶, 各自到达对方出发点后立即返回。第二次相遇时离B 地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米答案是 300 千米。解:通过画线段图可知,两个人第一次相遇时一共行了1 个 AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是 120*3 = 360千米,从

15、线段图可以看出,甲一共走了全程的(1+1/5 ) 。因此 360+ ( 1+1/5) = 300 千米从 A 地到 B 地,甲、乙两人骑自行车分别需要4 小时、 6 小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2 千米。如果二人分别至B 地,A 地后都立即折回。第二次相遇点第一次相遇点之间有()千米【例2】甲、乙两人分别沿周长为 400米的操场,同时出发同向而行,甲每分钟走60米,乙每分钟走40米,问两人多少分钟后再次相遇【解】两人相遇的情况是:甲领先乙以后,超过乙1圈再度赶上乙。则此题转化为追击问题了。追击路程为1个周长。400+ ( 60-40 ) =20 (分钟)答:

16、20分钟后两人再度相遇.环形跑道400米,甲、乙两名运动员同时自起点顺时针出发,甲每分钟跑400米,乙每分钟跑375米,问:多少时间后,甲、乙再次相遇小李和小刘在周长为 400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间甲、乙二人围绕一条长 400米的环形跑道练习长跑。甲每分钟跑350米,乙每分钟跑250米。二人从起跑线出发, 经过多长时间甲能追上乙甲、乙二人练习跑步, 若甲让乙先跑10米,则甲跑5秒钟可追上乙;若乙比甲先跑2秒钟,则甲跑4秒钟能追上乙。问:两人每秒钟各跑 多少米甲每小时行12千米,乙每小时行8

17、千米.某日甲从东村到西村,乙同时 从西村到东村,以知乙 到东村时,甲已先到西村5小时,求东西两村的 距离。A、B两地相距61千米,甲乙两人分别以每小时 5千米和每小时6千 米的速度同时从 A、B两地 出发,相对而行。途中甲碰到一件意外的事,停留了 1小时。问经多长时间两人才能相遇甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时 从西村到东村,以知乙 到东村时,甲已先到西村5小时,求东西两村的 距离。甲、乙两车同时从 A B两地相对开出,4小时后相遇,甲车再行3小时到达BMo已知甲车每小时比乙车每小时快 20千米,A B两地 相距多少千米甲乙两工程队分别从两端开挖一条水渠,甲工程

18、队每天挖100米,乙工程队每天比甲多挖50米10天后胜利挖通水渠,问水渠长多少米好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马甲、乙两匹马相距50米的地方同时出发,出发时甲马在前乙马在后。如果甲马每秒跑10米,乙马每秒跑12米,问:何时两马相距70米3、总结与归纳相遇问题:路程+速度和=相遇时间;相遇路程+相遇时间 =速度和;相遇时间x速度和=相遇路程 甲的路程+乙的路程=总路程追及问题(1) 、熟悉追及问题的三个基本公式:路程差 犍度差X追及时间; 速度差= 路程差+追及时间; 追及时间=路程差+速度差 (2) 、明确公式中三个量的含义:速度差:快车比慢车单位时

19、间内多行的路程即快车每小时比慢车多行的或每分钟多行的路程。追及时间:快车追上慢车相差的距离。路程差:快车开始和慢车相差的路程。(3) 、解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。练习三:1、甲乙二人上午8 时同时从东村骑车到西村去,甲每小时比乙快6 千米。中午12 时甲到西村后立即返回东村,在距西村15 千米处遇到乙。求东西两村相距多少千米思路:先找到路程差,就可以求出相遇时间为5小时,则甲的速度就是 15+ (5 4) =15 (千米/小时)。两村相距是15X4=60(千米)2、甲乙二人同时从A地到B地,甲每

20、分钟走250米,乙每分钟走90米。甲到达B地后立即返回A地,在离B地千米处相遇。A B 两地之间相距多少千米3、小平和小红同时从学校出发步行去小平家,小平每分钟比小红多走20 米。 30 分钟后小平到家,到家后立即沿原路返回,在离家 350 米处遇到小红。小红每分钟走多少米4、甲乙二人上午7时同时从A地去B地,甲每小时比乙快8千米。上午11时到达B地后立即返回,在距离B地24千米处相遇。求 A、 B 两地相距多少千米练习四:1、甲乙两队学生从相距18 千米的两地同时出发,相向而行。一个同学骑自行车以每小时14 千米的速度,在两队之间不停地往返联络。甲队每小时行5千米,乙队每小时行4千米。两队相

21、遇时,骑自行车的同学共行多少千米思路:要求两队相遇时,骑自行车的同学共行多少千米就要求他的速度和时间。速度是已知的,时间就是两队的相遇时间。只要先求出相遇时间就可以了。2、两支队伍从相距55 千米的两地相向而行。通信员骑马以每小时16 千米的速度在两支队伍之间不断往返联络。已知一支队伍每小时行5千米,另一支队伍每小时行6千米,两队相遇时,通信员共行了多少千米3、甲乙两人同时从两地出发,相向而行,距离是100千米。甲每小时行6千米,乙每小时行4千米,甲带着一条狗,狗每小时 行 10 千米。这只狗同甲一道出发,碰到乙的时候,它就掉头朝着甲这边跑,碰到甲的时候,它又掉头朝着乙这边跑。直到两人相遇时,

22、这只狗一共跑了多少千米4、两队同学同时从相距30 千米的甲乙两地相向出发,一只鸽子以每小时20 千米的速度在两队同学之间不断往返送信。如果鸽子从同学们出发到相遇共飞行了30 千米,而甲队同学比乙队同学每小时多走千米,求两队同学的行走速度。追及问题:1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80 米的速度先去学校,3 分钟后,哥哥骑车以每分钟200 米的速度也向学校骑去,那么哥哥几分钟追上弟弟2、姐妹两人在同一小学上学,妹妹以每分钟50 米的速度从家走向学校,姐姐比妹妹晚10 分钟出发,为了不迟到,她以每分钟150 米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远基本

23、的行程问题例题讲解我们每天都在行走,行走就离不开速度、时间、路程这三个量,这类问题就称为行程问题 相遇问题和追及问题就是行程问题中的两种类型在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路解答行程问题时必须注意:要弄清题意:对具体问题要做仔细分析,必要时作一条线段图帮助理解要弄清距离、速度和、时间之间的关系,紧扣数量关系式:解行程问题必备的基本公式基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。基本公式:路程=速度X时间;路程一时间=速度;路程+速度=时间关键问题:确定行

24、程过程中的位置相遇问题:速度和X相遇时间=相遇路程(请写出其他公式)追击问题:追击时间=路程差+速度差(写出其他公式)流水问题:顺水行程=(船速+水速)X顺水时间逆水行程=(船速水速)X逆水时间顺水速度=船速+水速 逆水速度=船速-水速静水速度=(顺水速度+逆水速度)+2水速=(顺水速度逆水速度)+2流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程,参照以上公式。【一般行程问题公式】平均速度X时间=路程;路程一时间=平均速度;路程+平均速度=时间。【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题” (两人背向而

25、行)两种。这两种题,都可用下面的公式解答:(速度和)X相遇(离)时间 =相遇(离)路程;相遇(离)路程一 (速度和)=相遇(离)时间;相遇(离)路程一相遇(离)时间瓶度和。【同向行程问题公式】追及(拉开)路程+ (速度差)=追及(拉开)时间;追及(拉开)路程一追及(拉开)时间=速度差;(速度差)X追及(拉开)时间=追及(拉开)路程。2、解题思路要正确的解答有关“行程问题”的应用题,必须弄清物体运动的具体情况。如运动的方向(相向,相背,同向),出发的 时间(同时,不同时),出发的地点(同地,不同地),运动的路线(封闭,不封闭),运动的结果(相遇、相距多少、交错 而过、追及)。两个物体运动时,运动

26、的方向与运动的速度有着很大关系,当两个物体“相向运动”或“相背运动”时,此时的运动速度都是“两个物体运动速度的和”(简称速度和),当两个物体“同向运动”时,此时两个物体的追击的速度就变为了 “两个 物体运动速度的差"(简称速度差)。当物体运动有外作用力时,速度也会发生变化。如人在赛跑时顺风跑和逆风跑;船在河中顺水而下和逆水而上。此时人 在顺风跑是运动的速度就应该等于人本身运动的速度加上风的速度,人在逆风跑时运动的速度就应该等于人本身的速度减去风 的速度;我们再比较一下人顺风的速度和逆风的速度会发现,顺风速度与逆风速度之间相差着两个风的速度;同样比较“顺水 而下”与“逆流而上”,两个速

27、度之间也相差着两个“水流的速度”。 3、行程问题的细分可细分为下列15种问题:1、多次相遇问题;2、火车过桥问题;3、环形跑道问题;4、简单的相遇问题;5、基本行程问题;6、 钟面行程问题;7走走停停问题;8、接送问题;9、猎狗追兔问题;10、平均速度问题;11、流水行船问题;12、发车问题; 13、多人行程问题;14、二次相遇问题;15、电梯行程问题火车过桥(桥长+车长)+速度力寸间(桥长+车长)+时间=速度速度*时间=桥长+ 车长接送问题例:某工厂每天早晨都派小汽车接专家上班 .有一天,专家为了早些到厂,比平时提前一小时出发,步行去工厂,走了一 段时间后遇到来接他的汽车,他上车后汽车立即调

28、头继续前进,进入工厂大门时,他发现只比平时早到10分钟,问专家在路上步行了多长时间才遇到汽车(设人和汽车都作匀速运动,他上车及调头时间不记 )分析:设专家从家中出发后走到 M处(如图1)与小汽车相遇。由于正常接送必须从 BHZB,而题中接送是从 BHMHB 恰好提前10分钟;则小汽车从 MHKM刚好需10分钟;于是小汽车从MRA只需5分钟。这说明专家到M处遇到小汽车时再过 5分钟,就是以前正常接送时在家的出发时间,故专家的行走时间再加上5分钟恰为比平时提前的1小时,从而专家行走了: 60一 5=55 (分钟)。2追及问题例:甲、乙同时起跑,绕300米的环行跑道跑,甲每秒跑 6米,乙每秒跑4米,

29、第二次追上乙时,甲跑了几圈分析:甲第一次追上乙后,追及距离是环形跑道的周长300米。第一次追上后,两人又可以看作是同时同地起跑,因此第二次追及的问题,就转化为类似于求解第一次追及的问题。甲第一次追上乙的时间是:300+ 2=150 (秒)甲第一次追上乙跑了: 6X 150=900 (米)这表明甲是在出发点上追上乙的,因此,第二次追上问题可以简化为把第一次追上时所跑的距离乘二即可,得甲第二次追上乙共跑了: 900+900=1800 (米)那么甲跑了 1800+ 300=6 (圈)2相遇问题例:甲乙二人分别从 A、B两地同时出发,并在两地间往返行走。第一次二人在距离B点400米处相遇,第二次二人又

30、在距离B点100米处相遇,问两地相距多少米2分析:(1)第一次二人在距离 B点400米处相遇.说明第一次相遇时乙行 400米.(2)甲、乙从出发到第二次相遇共行 3个全程。从第一次相遇后时到第二次相遇他们共行2个全程。在这2个全程中甲行400+100=500 米。说明甲在每个全程中行 500/2=250米。(3)因此在第一次相遇时(一个全程)250+400=650米答:两地相距650米。过桥问题例:某人步行的速度为每秒钟 2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。分析:火车越过人时,车比人多行驶的路程是车长90米,追及时间是10秒,所以速度差是90+10

31、=9米/秒,因此车速是2+9=11米/秒。分类编辑追及问题两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。这类常常会在考试考到,是行程中的一大类问题。相遇问题多个物体相向运动,通常求相遇时间或全程。流水问题船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使 船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度火车行程问题火车走过的长度其实还有本身车长,这是火车行程问题的特点。钟表问题时钟问题可以看做是一个特殊的圆形轨道上2人追及或相遇问题,不过这里的两个“人”分别是时钟的分针和时针。但是在许多时钟问题中

32、,往往我们会遇到各种“怪钟”,或者是“坏了的钟”,它们的时针和分针每分钟走的度数会与常规的时钟不同,这就需要我们要学会对不同的问题进行独立的分析。时钟问题一快慢表问题基本思路:1、按照行程问题中的思维方法解题;2、不同的表当成速度不同的运动物体;3、路程的单位是分格(表一周为60分格);4、时间是标准表所经过的时间; 5、合理利用行程问题中的比例关系;时钟问匿一群面迨及基本思路;封闭曲战上侬1及间殿.关键国题;确定分针与时针的初始位置;确定分针与时针的路程差:基本方法:分格方法:时科的钟面圆周被均匀分藤M、格羯小格我们称为1分格.分针毒小时走 B口分格,即一周:而时针只走5分格J敌外针链分钟走

33、1分格时针隹分钟 走U1西格度数方法:300M角度观点看j钟面圆所用是36丁 ,分针分髀转6U度,即早,时360£针每分钟普肃而度即I度.1 .多次相遇线型路程:甲乙共行全程数=相遇次数X 2-1环型路程:甲乙共行全程数=相遇次数其中甲共行路程=单在单个全程所行路程x共行全程数25、综合行程基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本公式:路程=速度x时间;路程一时间 =速度;路程+速度=时间关键问题:确定运动过程中的位置和方向。相遇问题:速度和X相遇时间 =相遇路程(请写出其他公式)追及问题:追及时间=路程差+速度差(写出其他公式)流水问题

34、:顺水行程=(船速+水速)X顺水时间逆水彳T程=(船速-水速)X逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)+2水速=(顺水速度-逆水速度)+2流水问题:关键是确定物体所运动的速度,参照以上公式。过桥问题:关键是确定物体所运动的路程,参照以上公式。主要方法:画线段图法基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。30、时钟问题-快慢表问题基本思路:(1)按照行程问题中的思维方法解题;(2)不同的表当成速度不同的运动物体;(3)路程的单位是分格(表一周为60分格);(4)时间是标准表所经过的时间;合理利用行程问题中的比例关系;31、时钟问题-钟面追及基本思路:封闭曲线上的追及问题。关键问题:确定分针与时针的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论