LDA U第一性原理方法_第1页
LDA U第一性原理方法_第2页
LDA U第一性原理方法_第3页
LDA U第一性原理方法_第4页
LDA U第一性原理方法_第5页
已阅读5页,还剩54页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、Introduction to LDA+U method and applications to transition-metal oxides:Importance of on-site Coulomb interaction U鄭弘泰國家理論中心 (清華大學)28 Aug, 2003, 東華大學Outline DFT, LDA (LDA, LSDA, GGA) Insufficiencies of LDA How to improve LDA Self-interaction correction (SIC) LDA+U method Applications of LDA+U on va

2、rious transition-metal oxides ConclusionsDensity Functional Theory (DFT)Hohenberg-Kohn Theorem, PR136(1964)B864 The ground-state energy of a system of identical spinless fermions is a unique functional of the particle density. This functional attains its minimum value with respect to variation of th

3、e particle density subject to the normalization condition when the density has its correct values.Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133333()()()1()()2| |GSextxcEn rTnn r Vr d rn r n rd rd rEnrr3()( )( ) ( )|extxcn rV rVrd rVn rrrInsufficiencies of LDA Poor eigenvalues, P

4、RB23, 5048 (1981) Lack of derivative discontinuity at integer N, PRL49, 1691 (1982) Gaps too small or no gap, PRB44, 943 (1991) Spin and orbital moment too small, PRB44, 943 (1991) Especially for transition metal oxidesPRB 23 (1981) 5048PRL 49 (1982) 1691PRB 44 (1991) 943Attempts on improving LDA Se

5、lf-interaction correction (SIC) PRB23(1981)5048, PRL65(1990)1148 Hartree-Fock (HF) method, PRB48(1993)5058 GW approximation (GWA), PRB46(1992)13051, PRL74(1995)3221 LDA+Hubbard U (LDA+U) method, PRB44(1991)943, PRB48(1993)16929Local density approximation (LDA)Kohn-Sham scheme PR140(1965)A1133333()()

6、()1()()2| |GSextxcEn rTnn r Vr d rn r n rd rd rEnrr3()( )( ) ( )|extxcn rV rVrd rVn rrrSelf-interaction correction (SIC) Perdew and Zunger, PRB23(1981)5048nEnELDAGSICG iixciiinErrrnrnrrdd| |) ()(2133)(| |) ()()(3rnVrrrnrdrVrVixciLDASICiBasic idea of LDA+U PRB 44 (1991) 943, PRB 48 (1993) 169 Delocal

7、ized s and p electrons : LDA Localized d or f electrons : +U using on-site d-d Coulomb interaction (Hubbard-like term) Uijninj instead of averaged Coulomb energyUN(N1)/2Hubbard U for localized d orbital :)(2)()(11nnndEdEdEUnnn+1n-1UeLDA+U energy functional :LDA+U potential :LDAULDAlocalEEjijinnUNUN2

8、12/)1()21()()()(iLDAiinUrVrnErVLDA+U eigenvalue :)21(iLDAiiinUnEFor occupied state ni=1,For unccupied state ni=0,2/ULDAi2/ULDAiUipeEexact(H) = 1.0 RyELDA(H) = 0.957 Ry Eexact(H) eLDA (H) = 0.538 Ry Eexact (H)Take Hydrogen for example:pe2Eexact(H) = 2.0 RypEexact (H+) = 0.0 RyepeEexp(H-) = 1.0552 Rye

9、ESIC(H-) = 1.0515 RyELDA(H-) : no bound stateU = E(H+) + E(H-) 2E(H) = 0.9448 RypeeLDA (H) = 0.538 RyU = 0.9448 RyOccupied (H) state:eLDA+U(H) = eLDA (H) U/2 = 1.0104 Ry 1 RyUnoccupied (H+) state:eLDA+U(H+) = eLDA (H) U/2 = 0.0656 Ry0 RyWhen to use LDA+U Systems that LDA gives bad results Narrow ban

10、d materials : UW Transition-metal oxides Localized electron systems Strongly correlated materials Insulators .How to calculate U and J PRB 39 (1989) 9028 Constrained density functional theory + Supper-cell calculation Calculate the energy surface as a function of local charge fluctuations Mapped ont

11、o a self-consistent mean-field solution of the Hubbard model Extract the Coulomb interaction parameter U from band structure resultsWhere to find U and J PRB 44 (1991) 943 : 3d atoms PRB 50 (1994) 16861 : 3d, 4d, 5d atoms PRB 58 (1998) 1201 : 3d atoms PRB 44 (1991) 13319 : Fe(3d) PRB 54 (1996) 4387

12、: Fe(3d) PRL 80 (1998) 4305 : Cr(3d) PRB 58 (1998) 9752 : Yb(4f)Notes on using LDA+U The magnitude of U is difficult to calculate accurately, the deviation could be as large as 2eV For the same element, U depends also on the ionicity in different compounds: the higher ionicity, the larger U One thus

13、 varies U in the reasonable range to obtain better results One might varies U in a much larger range to see the effect of U (qualitatively) Self-consistent LDA+U (much more difficult)Various LDA+U methods Hubbard model in mean field approx. (HMF) LDA+U : PRB 44 (1991) 943 (WIEN2K, LMTO) Approximate

14、self-interaction correction (SIC) LDA+U : PRB 48 (1993) 16929 (WIEN2K) Around the mean field (AMF) LDA+U : PRB 49 (1994) 14211 (WIEN2K) Rotationally invariant LDA+U : PRB 52 (1995) R5468 (VASP4.6, LMTO) Simplified rotationally invariant LDA+U : PRB 57 (1998) 1505 (VASP4.6, LMTO)Original LDA+U(HMF) :

15、 PRB 44 (1991) 943)(2100, ,nnnnUEEmmmmLDA, , ,00)()(21mmmmmmnnnnJU0)(mmLDAmnnUVV)( 0)()(mmmnnJULDA+U(SIC): PRB 48 (1993) 16929 4/ ) 2(2/ ) 1(NJNNUNEELDA, , , ,)(2121mmmmmmmmmmmmmmmnnJUnnU)(mmeffmmLDAmnUUVVmmmeffmeffmmmmJnUnUJU41)21()(JUUeff21LDA+U(AMF) : PRB 49 (1994) 14211)(2100, ,nnnnUEEmmmmmmLDA,

16、 , ,00)()(21mmmmmmmmmmnnnnJU0)(mmmmLDAmnnUVV)( 0)(mmmmmmmnnJURotationally invariant LDA+U: PRB52(1995)R5468 )1() 1(21) 1(21nnnnJnUnEELDA) | | ( | 21 ,mmmmeeeemmmmmeennmmVmmmmVmmnnmmVmm) | | ( | )21()21( mmeeeemmmmeemmnmmVmmmmVmmnmmVmmnJnUV:eeVSlater integralSimplified rotationally invariant LDA+U :

17、PRB 57 (1998) 1505 )()(2)(jlljjljjjLDAnnnJUEE21)(jljlljLDAjlJUnEVApplications of LDA+U on transition-metal oxides Pyrochlore : Cd2Re2O7 (VASP) Rutile : CrO2 (FP-LMTO) Double perovskite : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 (FP-LMTO) Cubic inverse spinel : high-temperature magnetite (Fe3O4, CoFe2O4, NiFe2

18、O4) (FP-LMTO, VASP, WIEN2K) Low-temperature charge-ordering Fe3O4 (VASP, LMTO)Pyrochlore Cd2Re2O7 Lattice type : fcc 88 atoms in cubic unit cell Space group : Fd3m a = 10.219A, x=0.316 Ionic model: Cd+2(4d10), Re+5(5d2), O-2(2p6) U(Cd) = 5.5 eV, U(Re) = 3.0 eV J = 0 eV (no spin moment)Pyrochlore str

19、ucturePRB 66 (2002) 12516O-2pCd-4dRe-5d-t2gPRB 66 (2002) 12516Pyrochlore Cd2Re2O7 LDA unoccupied DOS agree well with XAS data from K. D. Tsuei, SRRC Cd-4d band from LDA is 3 eV higher than photo emission spectrum (PRB66(2002)1251) Cd-4d band from LDA+U agree well with photo emission spectrum (PRB66(

20、2002)1251) Cd-4d orbital is close to localized electron picture, whereas the other orbitals are more or less itinerantRutile CrO2 Half-metal, moment = 2B Lattice type : bct 6 atoms in bct unit cell Space group : P42/mnm a = 4.419A, c=2.912A, u=0.303 Ionic model : Cr+4(3d2), O-2(2p6) U = 3.0 eV, J =

21、0.87 eVRutile structurePRB 56(1997) 15509Spin and orbital magnetic moments of CrO2 (uB)Spin momentOrbital momentCrOTotal CrOLDA1.89 -0.042 2.00-0.037 -0.0011LDA+U 1.99 -0.079 2.00-0.051 -0.0025Exp.2-0.05*-0.003* D. J. Huang et al, SRRCRutile CrO2 LDA+U enhances the gap and the exchange splitting at

22、the Fermi level LDA+U also gives larger spin and orbital magnetic moment UW, orbital moment quenched, stronger hybridization, stronger crystal field, close to itinerant pictureDouble perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 Half-metal, moment = 4, 3, 2B Lattice type : tet, fcc, fcc 40 atoms in t

23、et, fcc, fcc unit cell Space group : I4/mmm, Fm3m, Fm3m a = 7.89, 7.832, 7.878A, c/a=1.001, 1, 1 Ionic model : Fe+3(3d5), Cr+3(3d3), Mo+5(4d1), Re+5(5d2), W+5(5d1) U(Fe,Cr) = 4,3 eV, J(Fe,Cr) = 0.89, 0.87 eVDouble perovskite structureLDALDA+USFMOSFROSCWOSFMOSFROSCWO spin momentorbital moment Sr2FeMo

24、O6 GGA GGA+U Fe Mo total 3.80 -0.33 4.00 3.96 -0.43 4.00 Fe Mo0.043 0.0320.047 0.045Sr2FeReO6 GGA GGA+U Fe Re total 3.81 -0.85 3.00 3.98 -0.96 3.00 Fe Re0.070 0.230.066 0.27Sr2CrWO6 GGA GGA+U Cr W total 2.30 -0.33 2.00 2.46 -0.45 2.00 Cr W-0.007 0.10-0.007 0.15 GGAm = -2 -1 0 +1 +2 Fe 3d Fe 3d Re 5d

25、 Re 5d 0.95 0.92 0.98 0.92 0.95 0.17 0.20 0.17 0.20 0.20 0.27 0.21 0.28 0.20 0.22 0.35 0.42 0.26 0.58 0.43 GGA+Um = -2 -1 0 +1 +2 Fe 3d Fe 3d Re 5d Re 5d 0.96 0.93 0.98 0.94 0.96 0.15 0.17 0.16 0.16 0.18 0.26 0.20 0.27 0.19 0.21 0.36 0.43 0.26 0.61 0.45Occupation number of d orbital in Sr2FeReO6GGAm

26、 = -2 -1 0 +1 +2 Cr 3d Cr 3d W 5d W 5d 0.55 0.86 0.20 0.87 0.52 0.14 0.13 0.16 0.14 0.15 0.18 0.16 0.18 0.15 0.15 0.20 0.22 0.18 0.30 0.24GGA+Um = -2 -1 0 +1 +2Cr 3d Cr 3d W 5d W 5d 0.55 0.89 0.18 0.90 0.52 0.12 0.09 0.16 0.10 0.14 0.17 0.14 0.18 0.13 0.14 0.21 0.23 0.18 0.34 0.25Occupation number o

27、f d orbital in Sr2CrWO6Double perovskites : Sr2FeMoO6, Sr2FeReO6, Sr2CrWO6 LDA+U has significant effects on DOS, but experimental data is not available Orbital moment of 3d and 4d elements are all quenched because of strong crystal field 5d elements exhibit large unquenched orbital moment because of

28、 strong spin-orbit interaction in 5d orbitalsMagnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4 Half-metal, insulator, moment = 4, 3, 2B Lattice type : fcc Space group : Fd3m 56 atoms in fcc unit cell a = 8.394, 8.383, 8.351 A Ionic model : Fe+3(3d5), Fe+2(3d6), Co+2(3d7), Ni+2(3d8) U(Fe+3,Fe+2,

29、Co+2,Ni+2)=4.5, 4.0, 7.8, 8.0eV J(Fe,Co,Ni) = 0.89, 0.92, 0.95eVSpinel structureLDA+U, U(Fe)=4.5eV, U(Co)=7.8eVLDACoFe2O4LDA+U, U(Fe)=4.5eV, U(Ni)=8eVLDANiFe2O4Magnetite (high temperature) : Fe3O4, CoFe2O4, NiFe2O4 LDA+U gives better DOS for Fe3O4 LDA+U gives insulating ground states for CoFe2O4 and NiFe2O4 Spin moment of Fe3O4 from LDA+U agrees better with experimental value On-site

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论