版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、“开放教育”机械设计制造及其自动化专业(本科)机电控制工程基础第三单元教学辅导4、控制系统时域分析本章主要内容、基本要求、重点和难点主要内容(1) 典型输入信号和时域性能指标。(2) 时间响应概念,时间响应是系统在外加作用激励下,输出随时间变化的函数关系, 研究时间响应目的是分析系统的性能。(3) 一阶系统的瞬态响应。(4) 二阶系统的瞬态响应,性能指标。(5) 劳斯稳定判据;稳态误差分析计算(误差定义、静态误差系数、动态误差系数);扰动误差;减小稳态误差方法。基本要求(1) 了解线性定常系统时域性能分析的基本内容。典型输入信号形式及性能指标的规定。一阶系统的瞬态响应。(2) 掌握二阶系统的阶
2、跃响应,取不同值时的特征根在S平面上的位置及相应特性曲线。会利用公式计算性能指标。了解参数n和对性能的影响趋势。(3) 掌握劳斯稳定判据,稳态误差的概念,会计算典型输入时,不同类型系统的稳态误差,会计算扰动作用下稳态误差。了解减小稳态误差措施。重点:时间响应的基本概念,二阶系统的阶跃响应及性能指标,稳定性判据,稳态误差计算。难点:二阶系统瞬态响应;动态误差系数。41 典型输入信号和时域性能指标411 典型输入信号在控制工程中,常采用的典型信号:(1) 阶跃函数阶跃函数的表达式: 当 A=1时,叫做单位阶跃函数如图411(a)所示,记作1(t)。单位阶跃函数的拉氏变换为 例如 电源突然接通,负荷
3、的突然变化,指令的突然转换等等,均可视为阶跃作用。因此阶跃作用是评价系统瞬态性能时应用较多的一种典型信号。 x(t) x(t) t 1 0 t 0 t (a) 单位阶跃函数 (b) 单位斜坡函数 图 411 典型试验函数(2) 斜坡函数(速度函数)斜坡函数表达式:拉氏变换为 当A=1时, x(t)=t 称为单位速度函数(单位斜坡函数),如图411(b)所示,这种信号表征的是匀速变化信号。 二阶系统的阶跃响应系统闭环传递函数为 (434) (435)其结构图如图433所示。 图 433 二阶系统标准结构图阻尼比不同时,二阶系统的瞬态响应有很大差别,当=0时,系统等幅振荡,不能正常工作,而在1时,
4、系统瞬态响应为非周期过渡,响应速度又太慢。在欠阻尼0<<1中,对应=0.40.8时,响应过程,不仅过渡过程时间较短,而且振荡也不严重。因此,一般选择二阶系统工作在=0.40.8的欠阻尼工作状态。432 二阶系统的瞬态响应性能指标 例 已知二阶系统闭环传递函数为 。试求单位阶跃响应的tr , tm ,% , ts 和N的数值?解:题意分析这是一道典型二阶系统求性能指标的例题。解法是把给定的闭环传递函数与二阶系统闭环传递函数标准形式进行对比,求出参数,而后把代入性能指标公式中求出,和的数值。 上升时间 tr 峰值时间tm 过度过程时间ts 超调量 振荡次数N (振一次)例 设单位反馈系
5、统的开环传递函数为: 试求系统的性能指标,峰值时间,超调量和调节时间。 解:题意分析这是一道给定了开环传递函数,求二阶系统性能指标的练习题。在这里要抓住二阶系统闭环传递函数的标准形式与参数(,)的对应关系,然后确定用哪一组公式去求性能指标。 根据题目给出条件可知闭环传递函数为 与二阶系统传递函数标准形式相比较可得,即=1,=0.5。由此可知,系统为欠阻尼状态。故,单位阶跃响应的性能指标为 例 如图439所示系统,假设该系统在单位阶跃响应中的超调量=25%,峰值时间=0.5秒,试确定K和的值。 X(s) Y(s) 图439解:题意分析这是一道由性能指标反求参数的题目,关键是找出:K,与,的关系;
6、,与,的关系;通过,把,与K,联系起来。 由系统结构图可得闭环传递函数为 与二阶系统传递函数标准形式相比较,可得 由题目给定: 即 两边取自然对数可得 依据给定的峰值时间: (秒)所以 (弧度/秒)故可得 0.1例 已知系统的结构图如图4310所示,若 时,试求: (1) 当=0时,系统的tr , tm , ts的值。(2) 当0时,若使=20%,应为多大。 100X(s) Y(s) 图4310 解:题意分析这是一道二阶系统综合练习题。(1)练习输入信号不是单位阶跃信号时,求性能指标。关键是求出 ,。(2)的求法与例433相似。 (1) 由结构图可知闭环传递函数为 可得 由于 输出的拉氏变换为
7、: 则拉氏反变换为 (2) 当0时,闭环传递函数由 两边取自然对数 , 可得 故 例 设单位反馈系统的开环传递函数为 若T=0.1秒,试求开环放大系数K=10/s和K=20/s时:(1) 阻尼比及无阻尼自然振荡角频率 。(2) 单位阶跃响应的超调量和调节时间 。解:题意分析这是一道典型二阶系统求性能指标的练习题,通过该练习题数值计算,加深理解开环放大系数K值的改变,对系统参数,及性能指标的影响。(1) 系统闭环传递函数为 与二阶系统传递函数标准形式相比较,可得或当K=10/s时,=10(弧度秒),=0.5K=20/s时,=14.14(弧度秒),=0.354(2) , 当 K=10/s时,=16
8、.3% ,=0.362(秒), (秒)K=20/s时,=30.4% ,=0.237(秒) , =0.6(秒)由此可见,开环放大系数增大,使减小,增大,超调量增大,峰值时间减小,调节时间基本不变。例(1) 什么叫时间响应 答:系统在外加作用的激励下,其输出随时间变化的函数关系叫时间响应。(2) 时间响应由哪几部份组成?各部份的定义是什么? 答:时间响应由瞬态响应和稳态响应两部分组成。瞬态响应是系统受到外加作用后,系统从初始状态到最终稳定状态的响应过程称瞬态响应或者动态响应或称过渡过程。稳态响应是系统受到外加作用后,时间趋于无穷大时,系统的输出状态或称稳态。(3) 系统的单位阶跃响应曲线各部分反映
9、系统哪些方面的性能? 答:时间响应由瞬态响应和稳态响应两部分组成。瞬态响应反映系统的稳定性,相对稳定性及响应的快速性;稳态响应反映系统的准确性或稳态误差。(4) 时域瞬态响应性能指标有哪些?它们反映系统哪些方面的性能? 答:延迟时间;上升时间;峰值时间;调节时间;最大超调量.,反映系统的快速性,即灵敏度,反映系统的相对稳定性。45 代数稳定判据例 设系统的特征方程式为 试判别系统的稳定性。解:特征方程符号相同,又不缺项,故满足稳定的必要条件。列劳斯表判别。 由于第一列各数均为正数,故系统稳定。也可将特征方程式因式分解为 根均有负实部,系统稳定。 用劳斯判据确定系统参数的临界值。例 单位反馈系统
10、的开环传递函数为 试求k的稳定范围。解:系统的闭环特征方程: 列劳斯表 系统稳定的充分必要条件 K>00.35-0.025K>0得 K<14所以保证系统稳定,K的取值范围为0<K<14。4.6 稳态误差表461误差系数及稳态误差X(t)1系统0型K001型0K02型00K例 已知开环传递函数分别为和的两个系统,试求它们的静态误差系数和动态误差系数以及输入为时的稳态误差(其中R0、R1、R2均为正常数)。解:(1) 两个系统均为1型系统,其稳态误差系数为第一系统 第二系统 (2) 动态误差系数 用长除法求升幂级数 因此得动态误差系数 (3) 用静态误差系数法计算稳态
11、误差 第一个系统 第二个系统 (4) 用动态系数法计算稳态误差 对第一个系统 只要 R20,t时() 对第二个系统 只要 R20,t时() 由上面计算可以看出,静态误差系数相同的两个系统,可能具有不同的动态误差系数。但是对同一系统,无论采用那种方法计算稳态误差其结果都是相同的。例 单位反馈控制系统的开环传递函数为,试求在输入信号为作用时的稳态误差。解:题意分析该题是求稳态误差的基本题目,可采用不同的方法求解。在这里需要运用系统的迭加原理,及系统的类型。方法1:依据定义用终值定理求稳态误差。由题可知系统闭环传递函数为 输入信号的拉氏变换为 根据误差的定义,误差信号的拉氏变换为 由终值定理 方法2
12、:用静态误差系数法由于系统是I型系统,因此根据迭加原理当时 当时 故 方法3:用动态误差系数法误差传递函数为 所以 稳态误差 例(1) 系统的稳定性定义是什么? 答:系统受到外界扰动作用后,其输出偏离平衡状态,当扰动消失后,经过足够长的时间,若系统又恢复到原平衡状态,则系统是稳定的,反之系统不 稳定。(2) 系统稳定的充分和必要条件是什么? 答:系统的全部特征根都具有负实部,或系统传递函数的全部极点均位于S平面的左半部。(3) 误差及稳态误差的定义是什么? 答:输出端定义误差e(t):希望输出与实际输出之差。输入端定义误差e(t);输入与主反馈信号之差。稳态误差,误差函数e(t),当t时的误差值称为稳态误差,即 例 设控制系统如图465所示,其中输入信号,扰动信号,试计算该系统的稳态误差。 N(s) X(s) E(s) Y(s)图465解:令 输入信号为单位斜坡信号: 令,得在扰动作用下的误差传递函数: 扰动作用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年期货物偿债交易具体合同版
- 2024年标准竞业限制及知识产权保密协议版B版
- 2024年版权许可合同:音乐作品版权使用与授权
- 2025年咸宁货运从业资格证考试题目库存答案
- 2024年度国际物流运输网络保密及优化升级合同3篇
- 单位人事管理制度集锦汇编
- 钢铁制品采购投标技巧
- 2025民间借款合同格式范文
- 城市垃圾处理施工合同包工头
- 2024塔式起重机购置、租赁及安全管理规范合同3篇
- 商标出租合同范例
- 重大版小英小学六年级上期期末测试
- 会计助理个人年终工作总结
- 钢铁厂电工知识安全培训
- 2024年山东省菏泽市中考历史试卷
- 说明文方法和作用说明文语言准确性中国石拱桥公开课获奖课件省赛课一等奖课件
- 中南运控课设-四辊可逆冷轧机的卷取机直流调速系统设计
- 江苏省苏州市2023-2024学年高二上学期1月期末物理试卷(解析版)
- 酒店建设投标书
- 《基于javaweb的网上书店系统设计与实现》
- 2024年315消费者权益保护知识竞赛题库及答案(完整版)
评论
0/150
提交评论