关于步进电机和伺服电机选型_第1页
关于步进电机和伺服电机选型_第2页
关于步进电机和伺服电机选型_第3页
关于步进电机和伺服电机选型_第4页
关于步进电机和伺服电机选型_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于步进电机和伺服电机选型  1. 首先确定步进电机拖动负载所需要的扭矩。最简单的方法是在负载轴上加一杠杆,用弹簧秤拉动杠杆,拉力乘以力臂长度既是负载力矩。M=fXs或者根据负载特性从理论上计算出来。目前步进电机只标注最大静转距,步进电机的最大静转距不超过45Nm ,力矩越大,成本越高,如果您所选择的电机力矩较大或超过此范围,可以考虑加配减速装置。    2. 确定步进电机的最高运行转速。转速指标在步进电机的选取时至关重要,步进电机的特性是随着电机转速的升高,扭矩下降,其下降的快慢和很多参数有关,如 : 驱动器的驱动电压、电机的相电流

2、、电机的相电感、电机大小等等,一般的规律是:驱动电压越高,力矩下降越慢;电机的相电流越大,力矩下降越慢。在设计方案时,一般的规律应使电机的转速控制在几百转/分,当然高速也行,可以参考矩 - 频特性。    3. 根据负载最大力矩和最高转速这两个重要指标,再参考矩 - 频特性,就可以选择出适合自己的步进电机。如果您认为自己选出的电机太大,可以考虑加配减速装置,这样可以节约成本,也可以使您的设计更灵活。要选择好合适的减速比,要综合考虑力矩和速度的关系,选择出最佳方案。    4步进电机速度控制是靠输入的脉冲信号的变化来

3、改变的,从理论上说,只需给驱动器脉冲信号即可,每给驱动器一个脉冲(CP),步进电机就旋转一个步距角(细分时为一个细分步距角)但是实际上,如果脉冲CP信号变化太快,步进电机由于惯性将跟随不上电信号的变化,这时会产生堵转和丢步现象,所以步进电机在启动时,必须有升速过程,在停止时必须有降速过程。一般来说升速和降速规律相同,以下为升速为例介绍:    升速过程由突跳频率加升速曲线组成(降速过程反之)。突跳频率是指步进电机在静止状态时突然施加的脉冲启动频率,此频率不可太大,否则也会产生堵转和丢步。升降速曲线一般为指数曲线或经过修调的指数曲线,当然也可采用直线或正弦

4、曲线等。用户需根据自己的负载选择合适的突跳频率和升降速曲线,找到一条理想的曲线并不容易,一般需要多次试机才行。指数曲线在实际软件编程中比较麻烦,一般事先算好时间常数存贮在计算机存贮器内,工作过程中直接选取。 5. 最后还要考虑留有一定的(如 百分之20)力矩余量和转速余量。  6. 尽量选择混合式步进电机,它的性能高于反映式步进电机。  7.尽量选取细分驱动器,且使驱动器工作在细分状态。降低运行噪音。  8. 选取时且勿走入只看电机力矩这一个指标的误区,也就是说并非电机的扭矩越大越好,要和速度指标一起考虑。同一系列电机直径,

5、长度相同,电流大,电机高频性能好,反之亦然。  9.在转速要求较高的情况下可以选择驱动电压高一点的驱动器和大电流电机。  10.在选购时是采用两相,三相的还是五相的,这并没有什么具体的要求,只要步距角能满足使用要求就行。步距角越小,电机运行越平稳。举例: 8853C电线弯曲机步进电机选型已知:Z1=14,D1=55mm,Z2=28,D2=110mm,负载作±180°旋转,速度为60转每分,加速时间200ms,减速时间为200ms。求电机型号。夹具部分如下图所示:假设力学模型如下图所示:当夹具作±180°,

6、速度为60转每分的旋转时,其速度时间曲线图如下图所示:当电线尾部加上砝码时,需要考虑砝码重力产生的反相转矩,运动简图如下:(假定电线长度为400mm,砝码1Kg计算电机最大转矩计算夹具的惯性转矩(加速时)。T1=J*a=(21460967.2+10692.5*36.8*36.8)*104/1000000000=1.5(牛·米)若负载形状不规则,并在竖直面内旋转,则需要考虑加速时夹具重力产生的最大反相转矩。T2=Mgd=(10692.5-504.26790-1275.04214-703.31896-324.52998*36.8*9.8/1000000=0.078(牛·米)若试

7、验时挂1Kg砝码,则需要考虑加速时砝码产生的最大反相转矩。假定挂6个砝码,则砝码产生的最大反相转矩为:T3= 6Mgd=1000*50*9.8/1000000=2.94(牛·米)计算主带轮最大转矩(加速时)T4=J*a=64736.902161*104*2/1000000000=0.013(牛·米则电机最大启动转矩为Tm=T1/2+T2/2+T3/2+T4=1.5/2+0.078/2+2.94/2+0.013=2.272(牛·米取安全系数K=2,则选取电机的最大转矩为T=Tm*2=4.554N·M计算电机最大速度V=at*2/2*60=397.25(转每

8、分)实际8853C选用的是4.77 N·M,2000RPM的伺服电机,满足要求。伺服电机的选型计算方法、 伺服电机和步进电机的性能比较 步进电机作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流伺服电机也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行电动机。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。 一、控制精度不同 两相混合式步进电机步距角一

9、般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(SANYO DENKI)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。 交流伺服电机的控制精度由电机轴后端的旋转编码器保证。以山洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于

10、驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。 二、低频特性不同 步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或

11、驱动器上采用细分技术等。 交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(FFT),可检测出机械的共振点,便于系统调整。 三、矩频特性不同 步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其最高工作转速一般在300600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩,在额定转速以上为恒功率输出。 四、过载能力不同 步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以山洋交流伺服系统为例,它具有速度过载和转矩过载能

12、力。其最大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象。 五、运行性能不同 步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转的现象,停止时转速过高易出现过冲的现象,所以为保证其控制精度,应处理好升、降速问题。交流伺服驱动系统为闭环控制,驱动器可直接对电机编码器反馈信号进行采样,内部构成位置环和速度环,一般不会出现步进电机的丢步或过冲的现象,控制性能更为可靠。 六、速度响应性能不同 步进电机从静止加速到工作转速(一般为每分钟几百转)需要200400毫秒。交流伺服系统的加速性能较好,以山洋400W交流伺服电机为例,从静止加速到其额定转速3000RPM仅需几毫秒,可用于要求快速启停的控制场合。 综上所述,交流伺服系统在许多性能方面都优于步进电机。但在一些要求不高的场合也经常用步进电机来做执行电动机。所以,在控制系统的设计过程中要综合考虑控制要求、成本等多方面的因素,选用适当的控制电机。   、伺服电机的选型计算方法 注意三点:转数山洋公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论