版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2012年二次函数经典中考试题(含解析)一解答题(共30小题)1(2012镇江)对于二次函数y=x23x+2和一次函数y=2x+4,把y=t(x23x+2)+(1t)(2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E现有点A(2,0)和抛物线E上的点B(1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线E的顶点坐标是_;(2)判断点A是否在抛物线E上;(3)求n的值【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是_【应用1】二次函数y=3x2+5x+2是二次函数y=x23x+2和一次函数y=2x+4的
2、一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由【应用2】以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值2(2012漳州)已知抛物线y=x2+1(如图所示)(1)填空:抛物线的顶点坐标是(_,_),对称轴是_;(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PBx轴,垂足为B若PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足条件的点N的坐标;若不存在,请说明理由3(2012扬州)已知抛物线y=ax2+b
3、x+c经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由4(2012湘潭)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标5(2012咸宁)如图,在平面直角坐标系中,点C
4、的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D运动时间为t秒(1)当点B与点D重合时,求t的值;(2)设BCD的面积为S,当t为何值时,S=?(3)连接MB,当MBOA时,如果抛物线y=ax210ax的顶点在ABM内部(不包括边),求a的取值范围6(2012通辽)如图,在平面直角坐标系中,将一个正方形ABCD放在第一象限斜靠在两坐标轴上,且点A(0,2)、点B(1,0),抛物线y=ax2ax2经过点C(1)求
5、点C的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P与点Q(点C、D除外)使四边形ABPQ为正方形?若存在求出点P、Q两点坐标,若不存在说明理由7(2012陕西)如果一条抛物线y=ax2+bx+c(a0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是_三角形;(2)若抛物线y=x2+bx(b0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,OAB是抛物线y=x2+bx(b0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说
6、明理由8(2012宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A(_,_)、B(_,_);(2)若抛物线y=x2+bx+c经过A、B两点,则这条抛物线的解析式是_;(3)若点M是直线AB上方抛物线上的一个动点,作MNx轴于点N,问是否存在点M,使AMN与ACD相似?若存在,求出点M的横坐标;若不存在,说明理由;(4)当x7时,在抛物线上存在点P,使ABP得面积最大,求ABP面积的最大值9(2012宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(
7、1,0),B(2,0),交y轴于C(0,2),过A,C画直线(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H若M在y轴右侧,且CHMAOC(点C与点A对应),求点M的坐标;若M的半径为,求点M的坐标10(2012眉山)已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,OAB是等腰直角三角形(1)求过A、B、C三点的抛物线的解析式;(2)若直线CDAB交抛物线于D点,求D点的坐标;(3)若P点是抛物线上的动点,且在第一象限,那么PAB是否有最大面积?若有,求出此时P点的坐标和P
8、AB的最大面积;若没有,请说明理由11(2012莱芜)如图,顶点坐标为(2,1)的抛物线y=ax2+bx+c(a0)与y轴交于点C(0,3),与x轴交于A、B两点(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC交于点D,连接AC、AD,求ACD的面积;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与BCO相似?若存在,求点E的坐标;若不存在,请说明理由12(2012锦州)如图,抛物线y=ax2+bx3交y轴于点C,直线l为抛物线的对称轴,点P在第三象限且为抛物线的顶点P到x轴的距离为,到y轴的距离为1点C关于直线l
9、的对称点为A,连接AC交直线l于B(1)求抛物线的表达式;(2)直线y=x+m与抛物线在第一象限内交于点D,与y轴交于点F,连接BD交y轴于点E,且DE:BE=4:1求直线y=x+m的表达式;(3)若N为平面直角坐标系内的点,在直线y=x+m上是否存在点M,使得以点O、F、M、N为顶点的四边形是菱形?若存在,直接写出点M的坐标;若不存在,请说明理由13(2012呼伦贝尔)如图,在平面直角坐标系内,RtABCRtFED,点C、D与原点O重合,点A、F在y轴上重合,B=E=30°,AC=FD=FED不动,ABC沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两
10、个三角形重叠部分的面积为s(1)求出图中点B的坐标;(2)如图,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的P在运动过程中是否存在与y轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由(3)求出整个运动过程中s与x的函数关系式14(2012河池)如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=x2+x+4经过A、B两点(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和
11、点P,连接PA、PB设直线l移动的时间为t(0t4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由15(2012贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的顶点为M(2,1),交x轴于点A、B两点,交y轴于点C,其中点B的坐标为(3,0)(1)求抛物线的解析式;(2)设经过点C的直线与该抛物线的另一个点为D,且直线CD和直线CA关于直线CB对称,求直线CD的解析式;(3)在该抛物线的对称轴上存在点P,满足P
12、M2+PB2+PC2=35,求点P的坐标;并直接写出此时直线OP与该抛物线交点的个数16(2012广元)如图,在矩形ABCD中,AO=3,tanACB=以O为坐标原点,OC为x轴,OA为y轴建立平面直角坐标系,设D、E分别是线段AC、OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动设运动时间为t(秒)(1)求直线AC的解析式;(2)用含t的代数式表示点D的坐标;(3)在t为何值时,ODE为直角三角形?(4)在什么条件下,以RtODE的三个顶点能确定一条对称轴平行于y轴的抛物线?并请选择一种情况,求出所确定的抛物线的解析式17(201
13、2抚顺)如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上(1)求此抛物线的解析式;(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;在此抛物线上是否存在点D,使EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由18(2012恩施州)如图,已知抛物线y=x2+bx+c与一直线相交于A(1,0),C(2,3)两点,与y轴交于点N其顶点为D(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD
14、的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EFBD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值19(2012鄂州)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x2经过A、C两点,且AB=2(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位
15、速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与ABC相似;若存在,求t的值;若不存在,请说明理由20(2012丹东)已知抛物线y=ax22ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(1,0),O是坐标原点,且|OC|=3|OA|(1)求抛物线的函数表达式;(2)直接写出直线BC的函数表达式;(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF将正方形ODEF以每秒1个单位的速度沿x轴的
16、正方向移动,在运动过程中,设正方形ODEF与OBC重叠部分的面积为s,运动的时间为t秒(0t2)求:s与t之间的函数关系式;在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由21(2012大连)如图,抛物线y=ax2+bx+c经过A(,0)、B(3,0)、C(0,3)三点,线段BC与抛物线的对称轴相交于D该抛物线的顶点为P,连接PA、AD、DP,线段AD与y轴相交于点E(1)求该抛物线的解析式;(2
17、)在平面直角坐标系中是否存在点Q,使以Q、C、D为顶点的三角形与ADP全等?若存在,求出点Q的坐标;若不存在,说明理由;(3)将CED绕点E顺时针旋转,边EC旋转后与线段BC相交于点M,边ED旋转后与对称轴相交于点N,连接PM、DN,若PM=2DN,求点N的坐标(直接写出结果)22(2012朝阳)已知,如图,在平面直角坐标系中,RtABC的斜边BC在x轴上,直角顶点A在y轴的正半轴上,A(0,2),B(1,0)(1)求点C的坐标;(2)求过A、B、C三点的抛物线的解析式和对称轴;(3)设点P(m,n)是抛物线在第一象限部分上的点,PAC的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐
18、标;(4)在抛物线对称轴上,是否存在这样的点M,使得MPC(P为上述(3)问中使S最大时的点)为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由23(2012滨州)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(2,4),O(0,0),B(2,0)三点(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值24(2012北京)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(3,m),求m和k的值;(3)设二
19、次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围25(2012包头)已知直线y=2x+4与x轴、y轴分别交于A,D两点,抛物线y=x2+bx+c经过点A,D,点B是抛物线与x轴的另一个交点(1)求这条抛物线的解析式及点B的坐标;(2)设点M是直线AD上一点,且SAOM:SOMD=1:3,求点M的坐标;(3)如果点C(2,y)在这条抛物线上,在y轴的正半轴上是否存在点P,使BCP为等腰
20、三角形?若存在,请求出点P的坐标;若不存在,请说明理由26(2011淄博)抛物线y=ax2+bx+c与y轴交于点C(0,2),与直线y=x交于点A(2,2),B(2,2)(1)求抛物线的解析式;(2)如图,线段MN在线段AB上移动(点M与点A不重合,点N与点B不重合),且MN=,若M点的横坐标为m,过点M作x轴的垂线与x轴交于点P,过点N作x轴的垂线与抛物线交于点Q以点P,M,Q,N为顶点的四边形能否为平行四边形?若能,请求出m的值;若不能,请说明理由27(2011营口)如图(1),直线y=x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线y=x2+bx+c与x轴的另一个交点为A,顶
21、点为P(1)求该抛物线的解析式;(2)在该抛物线的对称轴上是否存在点M,使以C、P、M为顶点的三角形为等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由;(3)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由;(4)当0x3时,在抛物线上求一点E,使CBE的面积有最大值(图(2)、图(3)供画图探究)28(2011烟台)如图,在直角坐标系中,梯形ABCD的底边AB在x轴上,底边CD的端点D在y轴上直线CB的表达式为y=x+,点A、D的坐标分别为(4,0),(0,4)动点P自A点出发,在AB上匀速运
22、行动点Q自点B出发,在折线BCD上匀速运行,速度均为每秒1个单位当其中一个动点到达终点时,它们同时停止运动设点P运动t(秒)时,OPQ的面积为s(不能构成OPQ的动点除外)(1)求出点B、C的坐标;(2)求s随t变化的函数关系式;(3)当t为何值时s有最大值?并求出最大值29(2011襄阳)如图,在平面直角坐标系xoy中,AB在x轴上,AB=10,以AB为直径的O'与y轴正半轴交于点C,连接BC,ACCD是O'的切线,AD丄CD于点D,tanCAD=,抛物线y=ax2+bx+c过A,B,C三点(1)求证:CAD=CAB;(2)求抛物线的解析式;判断抛物线的顶点E是否在直线CD上
23、,并说明理由;(3)在抛物线上是否存在一点P,使四边形PBCA是直角梯形?若存在,直接写出点P的坐标(不写求解过程);若不存在,请说明理由30(2011湘西州)如图抛物线y=x22x+3与x轴相交于点A和点B,与y轴交于点C(1)求点A、点B和点C的坐标(2)求直线AC的解析式(3)设点M是第二象限内抛物线上的一点,且SMAB=6,求点M的坐标(4)若点P在线段BA上以每秒1个单位长度的速度从 B 向A运动(不与B,A重合),同时,点Q在射线AC上以每秒2个单位长度的速度从A向C运动设运动的时间为t秒,请求出APQ的面积S与t的函数关系式,并求出当t为何值时,APQ的面积最大,最大面积是多少?
24、2013年3月zhp3709的初中数学组卷参考答案与试题解析一解答题(共30小题)1(2012镇江)对于二次函数y=x23x+2和一次函数y=2x+4,把y=t(x23x+2)+(1t)(2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线E现有点A(2,0)和抛物线E上的点B(1,n),请完成下列任务:【尝试】(1)当t=2时,抛物线E的顶点坐标是(1,2);(2)判断点A是否在抛物线E上;(3)求n的值【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线E总过定点,这个定点的坐标是A(2,0)、B(1,6)【应用1】二次函数y=3x2+5x+
25、2是二次函数y=x23x+2和一次函数y=2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由【应用2】以AB为一边作矩形ABCD,使得其中一个顶点落在y轴上,若抛物线E经过点A、B、C、D中的三点,求出所有符合条件的t的值考点:二次函数综合题2331208专题:计算题;压轴题;新定义;数形结合分析:【尝试】(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;(2)将点A的坐标代入抛物线E上直接进行验证即可;(3)已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n的值【发现】将抛物线E展开,然后将含t值的式子整合到一起,令该式子为0(此时
26、无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标【应用1】将【发现】中得到的两个定点坐标代入二次函数y=3x2+5x+2中进行验证即可【应用2】该题的关键是求出C、D的坐标;首先画出相应的图形,过C、D作坐标轴的垂线,通过构建相似三角形或全等三角形来求解在求得C、D的坐标后,已知抛物线E必过A、B,因此只需将C或D的坐标代入抛物线E的解析式中,即可求出符合条件的t值解答:解:【尝试】(1)将t=2代入抛物线E中,得:y=t(x23x+2)+(1t)(2x+4)=2x24x=2(x1)22,此时抛物线的顶点坐标为:(1,2)(2)将x=2代入y=t(x23x+2)+(1t)(2x+4
27、),得 y=0,点A(2,0)在抛物线E上(3)将x=1代入抛物线E的解析式中,得:n=t(x23x+2)+(1t)(2x+4)=6【发现】将抛物线E的解析式展开,得:y=t(x23x+2)+(1t)(2x+4)=t(x2)(x+1)2x+4抛物线E必过定点(2,0)、(1,6)【应用1】将x=2代入y=3x2+5x+2,左边=右边=0,即点A在抛物线上将x=1代入y=3x2+5x+2,计算得:y=66,即可得抛物线y=3x2+5x+2不经过点B,二次函数y=3x2+5x+2不是二次函数y=x23x+2和一次函数y=2x+4的一个“再生二次函数”【应用2】如图,作矩形ABC1D1和ABC2D2
28、,过点B作BKy轴于点K,过B作BMx轴于点M,易得AM=3,BM=6,BK=1,KBC1MBA,则:=,即=,求得 C1K=,所以点C1(0,)易知KBC1GAD1,得AG=1,GD1=,点D1(3,)易知OAD2GAD1,=,由AG=1,OA=2,GD1=,求得 OD2=1,点D2(0,1)易知TBC2OD2A,得TC2=AO=2,BT=OD2=1,所以点C2(3,5)抛物线E总过定点A(2,0)、B(1,6),符合条件的三点可能是A、B、C或A、B、D当抛物线E经过A、B、C1时,将C1(0,)代入y=t(x23x+2)+(1t)(2x+4),求得t1=;当抛物线E经过A、B、D1,A、
29、B、C2,A、B、D2时,可分别求得t2=,t3=,t4=满足条件的所有t的值为:,点评:该题通过新定义的形式考查了二次函数、矩形、相似三角形、全等三角形等综合知识,理解新名词的含义尤为关键最后一题的综合性较强,通过几何知识找出C、D点的坐标是此题的难点所在2(2012漳州)已知抛物线y=x2+1(如图所示)(1)填空:抛物线的顶点坐标是(0,1),对称轴是x=0(或y轴);(2)已知y轴上一点A(0,2),点P在抛物线上,过点P作PBx轴,垂足为B若PAB是等边三角形,求点P的坐标;(3)在(2)的条件下,点M在直线AP上在平面内是否存在点N,使四边形OAMN为菱形?若存在,直接写出所有满足
30、条件的点N的坐标;若不存在,请说明理由考点:二次函数综合题2331208分析:(1)根据函数的解析式直接写出其顶点坐标和对称轴即可;(2)根据等边三角形的性质求得PB=4,将PB=4代入函数的解析式后求得x的值即可作为P点的横坐标,代入解析式即可求得P点的纵坐标;(3)首先求得直线AP的解析式,然后设出点M的坐标,利用勾股定理表示出有关AP的长即可得到有关M点的横坐标的方程,求得M的横坐标后即可求得其纵坐标,解答:解:(1)顶点坐标是(0,1),对称轴是y轴(或x=O)(2)PAB是等边三角形,ABO=90°60°=30°AB=20A=4PB=4解法一:把y=4代
31、入y=x2+1,得 x=±2P1(2,4),P2(2,4) 解法二:OB=2P1(2,4) 根据抛物线的对称性,得P2(2,4) (3)点A的坐标为(0,2),点P的坐标为(2,4)设线段AP所在直线的解析式为y=kx+b解得:解析式为:y=x+2设存在点N使得OAMN是菱形,点M在直线AP上,设点M的坐标为:(m,m+2)如图,作MQy轴于点Q,则MQ=m,AQ=OQOA=m+22=m四边形OAMN为菱形,AM=AO=2,在直角三角形AMQ中,AQ2+MQ2=AM2,即:m2+(m)2=22解得:m=±代入直线AP的解析式求得y=3或1,当P点在抛物线的右支上时,分为两种
32、情况:当N在右图1位置时,OA=MN,MN=2,又M点坐标为(,3),N点坐标为(,1),即N1坐标为(,1)当N在右图2位置时,MN=OA=2,M点坐标为(,1),N点坐标为(,1),即N2坐标为(,1)当P点在抛物线的左支上时,分为两种情况:第一种是当点M在线段PA上时(PA内部)我们求出N点坐标为(,1);第二种是当M点在PA的延长线上时(在第一象限)我们求出N点坐标为(,1)存在N1(,1),N2(,1)N3(,1),N4(,1)使得四边形OAMN是菱形点评:本题考查了二次函数的应用,解题的关键是仔细读题,并能正确的将点的坐标转化为线段的长,本题中所涉及的存在型问题更是近几年中考的热点
33、问题3(2012扬州)已知抛物线y=ax2+bx+c经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由考点:二次函数综合题2331208专题:综合题;分类讨论分析:(1)直接将A、B、C三点坐标代入抛物线的解析式中求出待定系数即可(2)由图知:A、B点关于抛物线的对称轴对称,那么根据抛物线的对称性以及两点之间线段最短可知:若连接BC,那么BC与直线l的交点即为符合
34、条件的P点(3)由于MAC的腰和底没有明确,因此要分三种情况来讨论:MA=AC、MA=MC、AC=MC;可先设出M点的坐标,然后用M点纵坐标表示MAC的三边长,再按上面的三种情况列式求解解答:解:(1)将A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得:,解得:抛物线的解析式:y=x2+2x+3(2)连接BC,直线BC与直线l的交点为P;点A、B关于直线l对称,PA=PB,BC=PC+PB=PC+PA设直线BC的解析式为y=kx+b(k0),将B(3,0),C(0,3)代入上式,得:,解得:直线BC的函数关系式y=x+3;当x=1时,y=2,即P的坐标(1,2)(3
35、)抛物线的对称轴为:x=1,设M(1,m),已知A(1,0)、C(0,3),则:MA2=m2+4,MC2=(3m)2+1=m26m+10,AC2=10;若MA=MC,则MA2=MC2,得:m2+4=m26m+10,得:m=1;若MA=AC,则MA2=AC2,得:m2+4=10,得:m=±;若MC=AC,则MC2=AC2,得:m26m+10=10,得:m1=0,m2=6;当m=6时,M、A、C三点共线,构不成三角形,不合题意,故舍去;综上可知,符合条件的M点,且坐标为 M(1,)(1,)(1,1)(1,0)点评:该二次函数综合题涉及了抛物线的性质及解析式的确定、等腰三角形的判定等知识,
36、在判定等腰三角形时,一定要根据不同的腰和底分类进行讨论,以免漏解4(2012湘潭)如图,抛物线的图象与x轴交于A、B两点,与y轴交于C点,已知B点坐标为(4,0)(1)求抛物线的解析式;(2)试探究ABC的外接圆的圆心位置,并求出圆心坐标;(3)若点M是线段BC下方的抛物线上一点,求MBC的面积的最大值,并求出此时M点的坐标考点:二次函数综合题2331208专题:转化思想分析:(1)该函数解析式只有一个待定系数,只需将B点坐标代入解析式中即可(2)首先根据抛物线的解析式确定A点坐标,然后通过证明ABC是直角三角形来推导出直径AB和圆心的位置,由此确定圆心坐标(3)MBC的面积可由SMBC=BC
37、×h表示,若要它的面积最大,需要使h取最大值,即点M到直线BC的距离最大,若设一条平行于BC的直线,那么当该直线与抛物线有且只有一个交点时,该交点就是点M解答:解:(1)将B(4,0)代入抛物线的解析式中,得:0=16a×42,即:a=;抛物线的解析式为:y=x2x2(2)由(1)的函数解析式可求得:A(1,0)、C(0,2);OA=1,OC=2,OB=4,即:OC2=OAOB,又:OCAB,OACOCB,得:OCA=OBC;ACB=OCA+OCB=OBC+OCB=90°,ABC为直角三角形,AB为ABC外接圆的直径;所以该外接圆的圆心为AB的中点,且坐标为:(,
38、0)(3)已求得:B(4,0)、C(0,2),可得直线BC的解析式为:y=x2;设直线lBC,则该直线的解析式可表示为:y=x+b,当直线l与抛物线只有一个交点时,可列方程:x+b=x2x2,即:x22x2b=0,且=0;44×(2b)=0,即b=4;直线l:y=x4所以点M即直线l和抛物线的唯一交点,有:,解得:即 M(2,3)过M点作MNx轴于N,SBMC=S梯形OCMN+SMNBSOCB=×2×(2+3)+×2×3×2×4=4点评:考查了二次函数综合题,该题的难度不算太大,但用到的琐碎知识点较多,综合性很强熟练掌握直角
39、三角形的相关性质以及三角形的面积公式是理出思路的关键5(2012咸宁)如图,在平面直角坐标系中,点C的坐标为(0,4),动点A以每秒1个单位长的速度,从点O出发沿x轴的正方向运动,M是线段AC的中点将线段AM以点A为中心,沿顺时针方向旋转90°,得到线段AB过点B作x轴的垂线,垂足为E,过点C作y轴的垂线,交直线BE于点D运动时间为t秒(1)当点B与点D重合时,求t的值;(2)设BCD的面积为S,当t为何值时,S=?(3)连接MB,当MBOA时,如果抛物线y=ax210ax的顶点在ABM内部(不包括边),求a的取值范围考点:二次函数综合题2331208专题:压轴题;动点型分析:(1)
40、由于CAB=90°,易证得RtCAORtABE;当B、D重合时,BE的长已知(即OC长),根据AC、AB的比例关系,即可得到AO、BE的比例关系,由此求得t的值(2)求BCD的面积时,可以CD为底、BD为高来解,那么表示出BD的长是关键;RtCAORtABE,且知道AC、AB的比例关系,即可通过相似三角形的对应边成比例求出BE的长,进一步得到BD的长,在表达BD长时,应分两种情况考虑:B在线段DE上,B在ED的延长线上(3)首先将抛物线的解析式进行配方,可得到抛物线的顶点坐标,将其横坐标分别代入直线MB、AB的解析式中,可得到抛物线对称轴与这两条直线的交点坐标,根据这两个坐标即可判定
41、出a的取值范围解答:解:(1)CAO+BAE=90°,ABE+BAE=90°,CAO=ABERtCAORtABE=t=8(2)由RtCAORtABE可知:BE=,AE=2当0t8时,S=CDBD=(2+t)(4)=t1=t2=3当t8时,S=CDBD=(2+t)(4)=t1=3+5,t2=35(为负数,舍去)当t=3或3+5时,S=(3)过M作MNx轴于N,则MN=CO=2当MBOA时,BE=MN=2,OA=2BE=4抛物线y=ax210ax的顶点坐标为(5,25a)它的顶点在直线x=5上移动直线x=5交MB于点(5,2),交AB于点(5,1)125a2a点评:考查了二次函
42、数综合题,该题是图形的动点问题,前两问的关键在于找出相似三角形,得到关键线段的表达式,注意点在运动过程中未知数的取值范围问题最后一问中,先得到抛物线的顶点坐标是简化解题的关键6(2012通辽)如图,在平面直角坐标系中,将一个正方形ABCD放在第一象限斜靠在两坐标轴上,且点A(0,2)、点B(1,0),抛物线y=ax2ax2经过点C(1)求点C的坐标;(2)求抛物线的解析式;(3)在抛物线上是否存在点P与点Q(点C、D除外)使四边形ABPQ为正方形?若存在求出点P、Q两点坐标,若不存在说明理由考点:二次函数综合题2331208专题:综合题分析:(1)作CEx轴于点E,根据四边形ABCD为正方形,
43、得到RtAOBRtCEA,因此OA=BE=2,OB=CE=1,据此可求出C点坐标;(2)然后将C点坐标代入抛物线中即可求出二次函数的解析式(3)可以AB为边在抛物线的左侧作正方形AQPB,过P作PEy轴,过Q作QG垂直x轴于G,不难得出PEABQGBAO,据此可求出P,Q的坐标,然后将两点坐标代入抛物线的解析式中即可判断出P、Q是否在抛物线上解答:解:(1)作CEx轴于点E,四边形ABCD为正方形,ABO+CBE=90°,OAB+OBA=90°,OAB=EBCRtAOBRtCEB,A(0,2)、点B(1,0),AO=2,BO=1得OE=2+1=3,CE=1C点坐标为(3,1
44、);(2)抛物线经过点C,1=a×32a×32,a=,抛物线的解析式为y=x2x2;(2)在抛物线上存在点P、Q,使四边形ABQP是正方形以AB为边在AB的左侧作正方形ABPQ,过P作PEOA于E,QGx轴于G,可证PEABQGBAO,PE=BG=AO=2,AE=QG=BO=1,P点坐标为(2,1),Q点坐标为(1,1)由(1)抛物线y=x2x2,当x=2时,y=1;当x=1时,y=1P、Q在抛物线上故在抛物线上存在点P(2,1)、Q(1,1),使四边形ABQP是正方形点评:本题主要考查了待定系数法求二次函数解析式、正方形的判定、全等三角形的判定和性质等知识点综合性强,涉及
45、的知识点多,难度较大7(2012陕西)如果一条抛物线y=ax2+bx+c(a0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”(1)“抛物线三角形”一定是等腰三角形;(2)若抛物线y=x2+bx(b0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,OAB是抛物线y=x2+bx(b0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由考点:二次函数综合题2331208专题:代数几何综合题;新定义分析:(1)抛物线的顶点必在抛物线与x轴两交点连线的垂直平分线上,
46、因此这个“抛物线三角形”一定是等腰三角形(2)观察抛物线的解析式,它的开口向下且经过原点,由于b0,那么其顶点在第一象限,而这个“抛物线三角形”是等腰直角三角形,必须满足顶点坐标的横、纵坐标相等,以此作为等量关系来列方程解出b的值(3)由于矩形的对角线相等且互相平分,所以若存在以原点O为对称中心的矩形ABCD,那么必须满足OA=OB,结合(1)的结论,这个“抛物线三角形”必须是等边三角形,首先用b表示出AE、OE的长,通过OAB这个等边三角形来列等量关系求出b的值,进而确定A、B的坐标,即可确定C、D的坐标,利用待定系数即可求出过O、C、D的抛物线的解析式解答:解:(1)如图;根据抛物线的对称
47、性,抛物线的顶点A必在O、B的垂直平分线上,所以OA=AB,即:“抛物线三角形”必为等腰三角形故填:等腰(2)当抛物线y=x2+bx(b0)的“抛物线三角形”是等腰直角三角形,该抛物线的顶点(,),满足=(b0)则b=2(3)存在如图,作OCD与OAB关于原点O中心对称,则四边形ABCD为平行四边形当OA=OB时,平行四边形ABCD是矩形,又AO=AB,OAB为等边三角形AOB=60°,作AEOB,垂足为E,AE=OEtanAOB=(b0)b=2A(,3),B(2,0)C(),D(2,0)设过点O、C、D的抛物线为y=mx2+nx,则,解得故所求抛物线的表达式为y=x2+2x点评:这
48、道二次函数综合题融入了新定义的形式,涉及到:二次函数的性质及解析式的确定、等腰三角形的判定和性质、矩形的判定和性质等知识,难度不大,重在考查基础知识的掌握情况8(2012宁德)如图,矩形OBCD的边OD、OB分别在x轴正半轴和y轴的负半轴上,且OD=10,OB=8,将矩形的边BC绕点B逆时针旋转,使点C恰好与x轴上的点A重合(1)直接写出点A、B的坐标:A(6,0)、B(0,8);(2)若抛物线y=x2+bx+c经过A、B两点,则这条抛物线的解析式是y=x2+x8;(3)若点M是直线AB上方抛物线上的一个动点,作MNx轴于点N,问是否存在点M,使AMN与ACD相似?若存在,求出点M的横坐标;若
49、不存在,说明理由;(4)当x7时,在抛物线上存在点P,使ABP得面积最大,求ABP面积的最大值考点:二次函数综合题2331208专题:计算题;压轴题;数形结合;分类讨论分析:(1)由OB长,能直接得到点B的坐标;在RtOAB中,已知OB、BA(即BC长)长,由勾股定理可得到OA的长,即可确定点A的坐标(2)根据(1)的结论,利用待定系数法能求出抛物线的解析式(3)根据OA、OB以及AD、CD的长,不难发现BAO=CAD,那么若题干提到的两个三角形若相似,必须满足夹这对相等角的两组对应边成比例,所以分两种情况,列比例式求解即可(4)此题涉及的情况较多,大致分三种情况:点P在x轴下方(分左右两侧共
50、两种情况)、点P在x轴上方;可过点P作x轴的垂线,通过规则图形间的面积和差关系得出关于ABP的函数关系式,再由函数的性质得到ABP的面积最大值解答:解:(1)由OB=8,得:B(0,8)BA由BC旋转所得,BA=BC=10;在RtBAO中,OB=8,BA=10,则:OA=6,即:A(6,0)A(6,0)、B(0,8)(2)抛物线y=x2+bx+c经过A、B两点,则:,解得 故这条抛物线的解析式:y=x2+x8(3)存在设M(m,m2+m8),则N(m,0),MN=|m2+m8|,NA=6m,又DA=4,CD=8;若点M在N上方,=,则AMNACD;=,即 m216m+60m=0,解得 m=6或
51、m=10与点M是直线AB上方抛物线上的一个动点不符此时不存在点M,使AMN与ACD相似若点M在点N下方,=,则AMNACD;=,即 2m217m+30=0,解得 m=或m=6;当m=时符合条件;此时存在点M(,),使AMN与ACD相似综上所述,存在点M(,),使得AMN与ACD相似(4)设P(p,p2+p8),在y=x2+x8中,令y=0,得x=4或x=6;x7分为x4,4x6和6x7三个区间讨论:如图,当x4时,过点P作PHx轴于点H,则OH=p,HA=6p,PH=p2p+8;SABP=SOABS梯形OBPHSAPH=68(p2p+8)p(6p)(p2p+8)=p2+6p=(p3)2+9当x
52、4时,SABP随p的增大而减小;当x=时,SABP取最大值,且最大值为如图,当4x6时,过点P作PHBC于点H,过点A作AGBC于点G;则BH=p,HG=6p,PH=p2+p8+8=p2+pSABP=SBPH+S梯形PHGASABG=(p2+p)p+(p2+p+8)(6p)68=p2+6p=(p3)2+9当4x6时,SABP随p的增大而减小;当x=4时,SABP取得最大值,且最大值为8如图,当6x7时,过点P作PHx轴于点H;则OH=p,HA=p6,PH=p2p+8SABP=S梯形OBPHSOABSAPH=(p2p+8)p68(p6)(p2p+8)=p26p=(p3)29当6x7时,SABP随
53、p的增大而增大;当x=7时,SABP取得最大值,最大值为7;综上所述,当x=时,SABP取得最大值,最大值为点评:该题主要考查了矩形的性质、函数解析式的确定、相似三角形的判定和性质以及图形面积的求法等重要知识;后两个小题涉及了多种情况,容易出现漏解的情况,是本题易错的地方9(2012宁波)如图,二次函数y=ax2+bx+c的图象交x轴于A(1,0),B(2,0),交y轴于C(0,2),过A,C画直线(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H若M在y轴右侧,且CHMAOC(点C与点A对应),求点M的坐标;若M的半径为,求点M的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年古色古香游合同
- 2025年作品著作权使用许可协议
- 2025年度木工工艺研发与推广分包合同4篇
- 二零二五版房屋装修设计、施工及监理合同2篇
- 2025年中国连锁经营行业市场深度调查评估及投资方向研究报告
- 二零二五版离婚协议书针对存款账户的专项管理协议3篇
- 2025年度私人借款与信用评估机构合作协议
- 2025年度二零二五年度车牌借用与保险理赔合作协议
- 2025年度航空行业竞业协议敬业精神承诺合同
- 二零二五年度网约车平台车主与驾驶员合作协议书
- 教师招聘(教育理论基础)考试题库(含答案)
- 2024年秋季学期学校办公室工作总结
- 铺大棚膜合同模板
- 长亭送别完整版本
- 智能养老院视频监控技术方案
- 你比我猜题库课件
- 无人驾驶航空器安全操作理论复习测试附答案
- 建筑工地春节留守人员安全技术交底
- 默纳克-NICE1000技术交流-V1.0
- 蝴蝶兰的简介
- 老年人心理健康量表(含评分)
评论
0/150
提交评论