版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、文科人教版数学 解三角形姓名: 院 、 系: 数学学院 专业: 数学与应用数学 2011三角函数集及三角形高考题一选择填空题1.(2011年北京高考9)在中,若,则 .2.(2011年浙江高考5).在中,角所对的边分.若,则(A)- (B) (C) -1 (D) 13.(2011年全国卷1高考7)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于(A) (B) (C) (D)4.(2011全国卷),设函数(A)y=在单调递增,其图像关于直线对称(B)y=在单调递增,其图像关于直线对称(C)y= f (x) 在(0,)单调递减,其图像关于直线x = 对称(D)y= f
2、(x) 在(0,)单调递减,其图像关于直线x = 对称5.(2011年江西高考14)已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_.6(2011年安徽高考9)已知函数,其中为实数,若对恒成立,且,则的单调递增区间是(A) (B)(C) (D)7(2011四川高考8)在ABC中,则A的取值范围是 (A)(B) (C)(D)二:解答题1.(2011年北京高考17)已知函数()求的最小正周期;()求在区间上的最大值和最小值。2.(2011年浙江高考18)已知函数,.的部分图像,如图所示,、分别为该图像的最高点和最低点,点的坐标为.()求的最小正周期及的值;()若点的坐标为
3、,求的值.3. (2011年山东高考17) 在中,内角的对边分别为,已知,()求的值;()若,求的面积S。4.(2011年安徽高考16)在ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,求边BC上的高.5.(2011年全国卷高考18)ABC的内角A、B、C的对边分别为a、b、c.己知. ()求B;()若.6.(2011年湖南高考17)在中,角所对的边分别为且满足(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小7(2011年广东高考16)已知函数,(1)求的值;(2)设,求的值8(2011年广东高考18)已知函数,xR()求的最小正周期和最小值;()已知,求证:9.
4、(2011年江苏高考17)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.10.(2011年辽宁高考17)ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=a。(I)求;(II)若c2=b2+a2,求B。11. (2011年湖北高考17)设的内角A、B、C所对的边分别为a、b、c,已知(I) 求的周长;(II)求的值。12. (2011年浙江高考18)在ABC中,角A、B、C所对的边分别为a,b,c,已知 (I)求sinC的值;()当a=2, 2sinA=sinC时,求b及c的长2011三角函数集及三角形高考题答案一选择填空题1.(
5、2011年北京高考9)在中,若,则 .【答案】【解析】:由正弦定理得又所以2.(2011年浙江高考5).在中,角所对的边分.若,则(A)- (B) (C) -1 (D) 1【答案】D【解析】,.3.(2011年全国卷1高考7)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于(A) (B) (C) (D)【解析】由题意将的图像向右平移个单位长度后,所得的图像与原图像重合,说明了是此函数周期的整数倍,得,解得,又,令,得.4.(2011全国卷),设函数(A)y=在单调递增,其图像关于直线对称(B)y=在单调递增,其图像关于直线对称(C)y= f (x) 在(0,)单调递
6、减,其图像关于直线x = 对称(D)y= f (x) 在(0,)单调递减,其图像关于直线x = 对称解析:本题考查三角函数的性质。属于中等题。解法一:f(x)=sin(2x+)=cos2x.所以f(x) 在(0,)单调递减,其图像关于直线x = 对称。故选D。5.(2011年江西高考14)已知角的顶点为坐标原点,始边为x轴的正半轴,若是角终边上一点,且,则y=_.答案:8. 解析:根据正弦值为负数,判断角在第三、四象限,再加上横坐标为正,断定该 角为第四象限角。=6(2011年湖南高考9)【命题意图】本题考查正弦函数的有界性,考查正弦函数的单调性.属中等偏难题.【解析】若对恒成立,则,所以,.
7、由,(),可知,即,所以,代入,得,由,得,故选C.7(2011四川高考8)解析:由得,即,故,选C二解答题1.【解析】:()因为所以的最小正周期为()因为于是,当时,取得最大值2;当取得最小值12.(2011年浙江高考18)已知函数,.的部分图像,如图所示,、分别为该图像的最高点和最低点,点的坐标为.()求的最小正周期及的值;()若点的坐标为,求的值.2.()解:由题意得,因为在的图像上所以又因为,所以()解:设点Q的坐标为(). 由题意可知,得,所以 连接PQ,在PRQ中,PRQ=,由余弦定理得解得A2=3。又A0,所以A=。3. (2011年山东高考17) 在中,内角的对边分别为,已知,
8、()求的值;()若,求的面积S。解:()在中,由及正弦定理可得,即则,而,则,即。另解1:在中,由可得由余弦定理可得,整理可得,由正弦定理可得。另解2:利用教材习题结论解题,在中有结论.由可得即,则,由正弦定理可得。()由及可得则,S,即。4.(2011年安徽高考16)在ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,求边BC上的高.解:ABC180°,所以BCA,又,即,又0°<A<180°,所以A60°.在ABC中,由正弦定理得,又,所以BA,B45°,C75°,BC边上的高ADAC·sinC
9、.5.(2011年全国卷高考18)ABC的内角A、B、C的对边分别为a、b、c.己知. ()求B;()若.【思路点拨】第(I)问由正弦定理把正弦转化为边,然后再利用余弦定理即可解决。(II)在(I)问的基础上知道两角一边可以直接利用正弦定理求解.【解析】(I)由正弦定理得3分由余弦定理得.故,因此 .6分(II) 8分故 .6.(2011年安徽高考17)在中,角所对的边分别为且满足(I)求角的大小;(II)求的最大值,并求取得最大值时角的大小解析:(I)由正弦定理得因为所以(II)由(I)知于是取最大值2综上所述,的最大值为2,此时7(2011年广东高考16)已知函数,(1)求的值;(2)设,求的值16解:(1)(2),即,即,8(2011年广东高考18)已知函数,xR()求的最小正周期和最小值;()已知,求证:()解析:,的最小正周期,最小值()证明:由已知得,两式相加得,则9.(2011年江苏高考17)在ABC中,角A、B、C所对应的边为(1)若 求A的值;(2)若,求的值.解析:考察三角函数基本关系式、和差角公式、正余弦定理及有关运算能力,容易题。(1)(2)由正弦定理得:,而。(也可以先推出直角三角形)12. (2011年浙江高考18)()解:因为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 微波炉采购合同(3篇)
- 幼儿园老师开家长会发言稿
- 中队长述职报告范文
- 晋升转正述职报告
- 销售工作心得体会(35篇)
- 匆匆的读书心得感想(33篇)
- 五年级下册英语第4单元单词表
- 青海省西宁市(2024年-2025年小学五年级语文)人教版阶段练习(下学期)试卷及答案
- 上海市县(2024年-2025年小学五年级语文)人教版小升初真题(下学期)试卷及答案
- 五年级数学(小数乘除法)计算题专项练习及答案汇编
- 2025届高考语文复习:鉴赏诗歌的语言(炼字、炼句、语言风格)+课件
- 2024年企业收购委托代理协议文件版
- 统编版(2024)七年级上册道德与法治第八课《认识生命》教学设计
- 2024中国移动重庆公司社会招聘138人高频难、易错点500题模拟试题附带答案详解
- (完整版)初中道德与法治课程标准
- 2024年新人教版数学七年级上册教学课件 4.2 第2课时 去括号
- 在建工地第三方安全文明巡查方案、在建工地安全文明施巡查方案
- 2024年事业单位招聘考试公共基础知识试题及答案(共300题)
- 教科版五年级科学上册全册学案、学习任务单【全册】
- 2024年秋八年级历史上册 第13课 五四运动教案 新人教版
- 综合实践项目 制作细胞模型(课件) 2024-2025学年七年级生物上学期同步课件(2024人教版)
评论
0/150
提交评论