版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、经典的建筑给人以美的享受,你想知道其中的奥秘吗?经典的建筑给人以美的享受,你想知道其中的奥秘吗?问题问题1 1:观察下面的图片观察下面的图片, , 这些图片中的物体这些图片中的物体具有怎样的形状具有怎样的形状? ?我们如何描述它们的形状我们如何描述它们的形状? ?如果我们只考虑物体的如果我们只考虑物体的形状形状和和大小大小,而不考,而不考虑其它因素,那么由这些物体抽象出来的空虑其它因素,那么由这些物体抽象出来的空间图形就叫做间图形就叫做空间几何体空间几何体。问题问题2:观察上述空间几何体,构成这些空间几何观察上述空间几何体,构成这些空间几何 体的体的面面有什么特点?有什么特点?多面体多面体旋转
2、体旋转体问题问题3:如何定义多面体与旋转体呢:如何定义多面体与旋转体呢? 一般地,我们把由若干个平面多一般地,我们把由若干个平面多边形围成的几何体叫做边形围成的几何体叫做多面体多面体。 围成多面体的各个多边形叫做多面围成多面体的各个多边形叫做多面体的体的面面,ABCD.BCC B 如面,面,.ABAA如棱棱,.A D如顶点棱顶点ABCDABCD面 棱与棱的公共点叫做棱与棱的公共点叫做多面体的多面体的顶点顶点,定义定义 相邻两个面的公共边叫做多相邻两个面的公共边叫做多面体的面体的棱棱, 我们把由一个平面图形绕它所我们把由一个平面图形绕它所在平面内的一条定直线旋转所形成在平面内的一条定直线旋转所形
3、成的封闭几何体叫做的封闭几何体叫做旋转体旋转体.这条定直线叫做旋转体的这条定直线叫做旋转体的轴轴.轴ABABO多面体多面体棱棱柱柱棱棱锥锥棱台棱台旋转体旋转体圆柱圆柱圆锥圆锥圆台圆台球一一、 棱柱的结构特征棱柱的结构特征: :观察下列几何体并观察下列几何体并思考:具备哪些性质的几何体叫做棱柱思考:具备哪些性质的几何体叫做棱柱? ?ABCDA1A1B1B1C1C1D1ABCA1B1C1D1 E1ABCED 1、定义、定义:有两个面互相平行,其余各面都是有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做相
4、平行,由这些面所围成的几何体叫做棱柱棱柱。底面底面侧面侧面侧棱侧棱顶点顶点有两个面互相平行,有两个面互相平行,其余各面都是平行四其余各面都是平行四边形的几何体是棱柱边形的几何体是棱柱.命题是否正确,命题是否正确,为什么?为什么?思考:思考:定义定义:有两个面互相平行,其余各面都是四边有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做行,由这些面所围成的几何体叫做棱柱棱柱。三棱柱三棱柱四棱柱四棱柱五棱柱五棱柱u 侧棱不垂直于底的棱柱叫做侧棱不垂直于底的棱柱叫做斜棱柱斜棱柱。u侧棱垂直于底的棱柱叫做侧棱垂
5、直于底的棱柱叫做直棱柱直棱柱。u底面是正多边形的直棱柱叫做底面是正多边形的直棱柱叫做正棱柱正棱柱。 2、棱柱的分类:、棱柱的分类:棱柱的底面可以是三角形、棱柱的底面可以是三角形、四边形、五边形、四边形、五边形、 我们把这样的棱柱分我们把这样的棱柱分别叫做别叫做三棱柱、四棱柱、五棱柱、三棱柱、四棱柱、五棱柱、 3、棱柱的表示法、棱柱的表示法(下图下图) 用平行的两底面多边形的字母表示棱用平行的两底面多边形的字母表示棱柱柱,如:棱柱如:棱柱ABCDE- A1B1C1D1E1 。1.观观察下面的几何体,哪些是棱柱?察下面的几何体,哪些是棱柱?课堂练习课堂练习:二、棱锥的结构特征二、棱锥的结构特征观察
6、下列几何体观察下列几何体, ,有什么相同点?有什么相同点? 有一个面是多边形,其余各面是有一个有一个面是多边形,其余各面是有一个公共顶点的三角形,公共顶点的三角形, 由这些面所围成的几由这些面所围成的几何体叫做棱锥。何体叫做棱锥。棱锥的底面棱锥的底面棱锥的侧面棱锥的侧面棱锥的顶点棱锥的顶点棱锥的侧棱棱锥的侧棱SABCDE下列命题是否正确?下列命题是否正确?有一个面是多边形,其余各面都是三角有一个面是多边形,其余各面都是三角形的立体图形一定是棱锥形的立体图形一定是棱锥.思考思考明矾晶体明矾晶体2、棱锥的分类棱锥的分类: 按底面多边形的边数,可以分为三棱锥、按底面多边形的边数,可以分为三棱锥、四棱
7、锥、五棱锥、四棱锥、五棱锥、ABCDS3、棱锥的表示方法:棱锥的表示方法:用表示顶点和底面的字用表示顶点和底面的字母表示,如四棱锥母表示,如四棱锥S-ABCD。4、如果一个棱锥的底面是正多边形,并且顶点在如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥是底面的射影是底面的中心,这样的棱锥是正棱锥正棱锥.三、棱台的结构特征三、棱台的结构特征B B1 1A A1 1C C1 1D D1 1C C1 1 B B1 1A A1 1D D1 11 1、棱台的概念:、棱台的概念:用一个平行于棱锥底面用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分的平面去截棱锥,底面和截面
8、之间的部分叫做棱台。叫做棱台。C C1 1 B B1 1A A1 1D D1 1上底面上底面下底面下底面侧面侧面侧棱侧棱顶点顶点2 2、由三棱锥、四棱锥、五棱锥、由三棱锥、四棱锥、五棱锥截得的棱台,截得的棱台,分别叫做分别叫做三棱台,四棱台,五棱台三棱台,四棱台,五棱台3、棱台的表示法:棱台用表示上、下底面各顶棱台的表示法:棱台用表示上、下底面各顶点的字母来表示,如右图,点的字母来表示,如右图,棱台棱台ABCD-AABCD-A1 1B B1 1C C1 1D D1 1 。C C1 1 B B1 1A A1 1D D1 14、用正棱锥截得的棱台叫作、用正棱锥截得的棱台叫作正棱台正棱台。判断判断:
9、 :下列几何体是不是棱台下列几何体是不是棱台, ,为什么为什么? ?(1)(2)辨析辨析棱柱、棱锥、棱台的结构特征比较棱柱、棱锥、棱台的结构特征比较结构特征结构特征棱柱棱柱棱锥棱锥棱台棱台定义定义底面底面侧面侧面侧棱侧棱平行于底面平行于底面的截面的截面过不相邻两过不相邻两侧棱的截面侧棱的截面两底面是全等的两底面是全等的多边形多边形平行四边形平行四边形平行且相等平行且相等与两底面是全等的与两底面是全等的多边形多边形平行四边形平行四边形多边形多边形三角形三角形相交于顶点相交于顶点与底面是相似的与底面是相似的多边形多边形三角形三角形两底面是相似的两底面是相似的多边形多边形梯形梯形延长线交于一点延长线
10、交于一点与两底面是相似的与两底面是相似的多边形多边形梯形梯形练习练习1、判断下列说法是否正确、判断下列说法是否正确(1)有两个面互相平行,其余各面都是平行)有两个面互相平行,其余各面都是平行 四边形的几何体是棱柱。四边形的几何体是棱柱。(2)棱柱的任何两个平行平面都可以作为棱)棱柱的任何两个平行平面都可以作为棱 柱的底。柱的底。(3)棱柱的各个侧面都是平行四边形)棱柱的各个侧面都是平行四边形(4)一个)一个n(n大于等于大于等于3)棱柱共有棱柱共有2n个顶个顶点。点。2、判断下列说法是否正确、判断下列说法是否正确(1)棱锥的各侧面都是三角形)棱锥的各侧面都是三角形(2)有一个面是多边形其余各面
11、都是三角形,)有一个面是多边形其余各面都是三角形,由这些面围成的几何体是棱锥由这些面围成的几何体是棱锥(3) )四面体的任何一个面都可以作为棱锥的底面四面体的任何一个面都可以作为棱锥的底面(4)4)棱锥的各侧棱长相等棱锥的各侧棱长相等(5 5)用一个平面去截棱锥,棱锥底面和截面之)用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台间的部分是棱台(6 6)两个底面平行且相似其余各面都是梯形的)两个底面平行且相似其余各面都是梯形的多面体是棱台多面体是棱台(7 7)有两个面互相平行,其余四个面都是等腰)有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台梯形的六面体是棱台 例例3 3 一个三棱柱可
12、以分割成几个三棱一个三棱柱可以分割成几个三棱锥?锥?ACA1BB1C1A1BB1C1AA1BC1ACBC1思考:思考:既然棱柱、棱锥、棱台都既然棱柱、棱锥、棱台都是多面体,那么它们之间有怎样是多面体,那么它们之间有怎样的关系?当底面发生变化时,它的关系?当底面发生变化时,它们能否相互转化?们能否相互转化?棱台的上底面扩大棱台的上底面扩大 上下底面全等上下底面全等棱台的上底面缩小棱台的上底面缩小 为一个点为一个点旋转一周。旋转一周。矩形矩形直角三角形直角三角形半圆半圆直角梯形直角梯形圆柱圆柱圆锥圆锥球球圆台圆台四、圆柱的结构特征四、圆柱的结构特征矩矩 形形O1O 定义:以矩形的一边所在直线为旋转
13、轴,定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的曲面所围成的旋转体其余三边旋转形成的曲面所围成的旋转体叫做叫做圆柱圆柱。 (4)无论旋转到什么位置)无论旋转到什么位置,不垂不垂直于轴的边都叫做圆柱的母线。直于轴的边都叫做圆柱的母线。 (3)平行于轴的边旋转而)平行于轴的边旋转而成的曲面成的曲面 叫做圆柱的侧面。叫做圆柱的侧面。 (2) 垂直于轴的边旋转而垂直于轴的边旋转而成的圆面叫做圆柱的底面。成的圆面叫做圆柱的底面。(1)旋转轴叫做圆柱的轴。)旋转轴叫做圆柱的轴。ABAAOBO轴轴底面底面侧侧面面母母线线五、圆锥的结构特征五、圆锥的结构特征直角三角形直角三角形SAO (4)无论旋转
14、到什么位置)无论旋转到什么位置,不不垂直于轴的边都叫做圆锥的母垂直于轴的边都叫做圆锥的母线。线。(3)不垂直于轴的边旋转而成)不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。的曲面叫做圆锥的侧面。 (2) 垂直于轴的边旋转而成的垂直于轴的边旋转而成的圆面叫做圆锥的底面。圆面叫做圆锥的底面。(1)旋转轴叫做圆锥的轴。)旋转轴叫做圆锥的轴。定义:以直角三角形的一条直角边所定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转而成在直线为旋转轴,其余两边旋转而成的面所围成的旋转体叫做圆锥。的面所围成的旋转体叫做圆锥。S顶点顶点ABO轴轴侧侧面面母母线线B六、圆台的结构特征六、圆台的结构特征定义:用
15、一个平行于圆锥底面的平面去截定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分,这样的几圆锥,底面与截面之间的部分,这样的几何体叫做圆台。何体叫做圆台。OO底面底面底面底面轴轴侧面侧面母线母线 1平行于圆柱,圆锥,圆台的平行于圆柱,圆锥,圆台的 底面的截面是什么图形?底面的截面是什么图形? 过圆柱,圆锥,圆台的旋转过圆柱,圆锥,圆台的旋转 轴的截面是什么图形?轴的截面是什么图形?1:平行于底面的截面都是圆。:平行于底面的截面都是圆。2:过轴的截面(轴截面)分别是全等的矩:过轴的截面(轴截面)分别是全等的矩 形,等腰三角形,等腰梯形。形,等腰三角形,等腰梯形。想一想?想一想?七、球的
16、结构特征七、球的结构特征O O球心球心半径半径AB球的定义:球的定义:以半圆的直径所在直线为旋转轴,以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称半圆面旋转一周形成的旋转体叫做球体,简称球。球。(1)半圆的半径叫做)半圆的半径叫做球的半径。球的半径。(2)半圆的圆心叫做)半圆的圆心叫做球心。球心。(3)半圆的直径叫做球的)半圆的直径叫做球的直径。直径。2、球的表示:球的表示:用表示球心的字用表示球心的字母表示,如母表示,如球球O球球球面球面: 半圆弧旋转所成的曲面半圆弧旋转所成的曲面.轴轴其中半圆的圆心叫做球的其中半圆的圆心叫做球的球心球心,半,半圆的半径叫做球的圆的半
17、径叫做球的半径半径,半圆的直,半圆的直径叫做球的径叫做球的直径直径。用一个平面去截球体得到的截用一个平面去截球体得到的截面是什么图形?面是什么图形? 性质性质3:用一个平面去截球体:用一个平面去截球体得到的截面是一个圆。得到的截面是一个圆。想一想?想一想?例例1 判断:判断:(1)在圆柱的上下底面上各取一点,这两点的连)在圆柱的上下底面上各取一点,这两点的连 线是圆柱的母线线是圆柱的母线 ()()(2)圆台所有的轴截面是全等的等腰梯形()圆台所有的轴截面是全等的等腰梯形()(3)与圆锥的轴平行的截面是等腰三角形()与圆锥的轴平行的截面是等腰三角形()例例2、下列命题是真命题的是(、下列命题是真
18、命题的是( )A 以直角三角形的一直角边所在的直线为轴以直角三角形的一直角边所在的直线为轴旋转一周所得的几何体为圆锥;旋转一周所得的几何体为圆锥;B 以直角梯形的一腰所在的直线为轴旋转所以直角梯形的一腰所在的直线为轴旋转所得的旋转体为圆柱;得的旋转体为圆柱;C 圆柱、圆锥、棱锥的底面都是圆;圆柱、圆锥、棱锥的底面都是圆;D 有一个面为多边形,其他各面都是三角形有一个面为多边形,其他各面都是三角形的几何体是棱锥。的几何体是棱锥。A例例3 3、用平行于圆锥底面的平面去截一、用平行于圆锥底面的平面去截一个圆锥,截得的圆台的上、下底面圆的个圆锥,截得的圆台的上、下底面圆的半径分别是半径分别是4 cm4
19、 cm和和6 cm,6 cm,高是高是 5cm,5cm,(1 1)求圆台的母线长;)求圆台的母线长;(2 2)求圆锥的母线长和高。)求圆锥的母线长和高。例题例题 长方体长方体AC1中,中,AB=3,BC=2,BB1=1,由由A到到C1在长方体表面上的最短距离是多少?在长方体表面上的最短距离是多少?A1DACBD1B1C1AA1B1BC1D1CC1B1A1BADD1C1A1AB1如图边长为如图边长为1的正方体,有一蜘蛛潜伏在的正方体,有一蜘蛛潜伏在A处,处,B处有有一小虫被蜘蛛网粘住,请制作出实物模型,处有有一小虫被蜘蛛网粘住,请制作出实物模型,将正方体剪开,描叙蜘蛛爬行的最短路线将正方体剪开,
20、描叙蜘蛛爬行的最短路线AB1.1.2简单组合体简单组合体的结构特征的结构特征 日常生活中我们常用到的日用品,比如:消毒液、日常生活中我们常用到的日用品,比如:消毒液、暖瓶、洗洁精等的主要几何结构特征是什么?暖瓶、洗洁精等的主要几何结构特征是什么? 由柱、锥、台、球组成了一些简单的组合体认由柱、锥、台、球组成了一些简单的组合体认识它们的结构特征要注意整体与部分的关系识它们的结构特征要注意整体与部分的关系圆柱圆柱圆台圆台圆柱圆柱 走在街上会看到一些物体,它们的主要几何结构特走在街上会看到一些物体,它们的主要几何结构特征是什么?征是什么? 一些螺母、带盖螺母又是有什么主要的几何结构特一些螺母、带盖螺母又是有什么主要的几何结构特征呢?征呢? 蒙古大草原上遍布蒙古包,那么蒙古包的主要几何蒙古大草原上遍布蒙古包,那么蒙古包的主要几何结构特征是什么?结构特征是什么? 居民的住宅又有什么主要几何结构特征?居民的住宅又有什么主要几何结构特征? 下图是著名的中央电视塔和天坛,你能说说它们的下图是著名的中央电视塔和天坛,你能说说它们的主要几何结构特征吗?主要几何结构特征吗? 你能从旋转体的概念说说它们是由什么图形旋转而你能从旋转体的概念说说它们是由什么图形旋转而成的吗?成的吗? 你能想象这条曲线绕轴旋转而成的几何图形吗?你能想象这条曲线绕轴旋转而成的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论