数形结合的思想在初中数学教学中的渗透_第1页
数形结合的思想在初中数学教学中的渗透_第2页
数形结合的思想在初中数学教学中的渗透_第3页
数形结合的思想在初中数学教学中的渗透_第4页
数形结合的思想在初中数学教学中的渗透_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数形结合的思想在初中数学教学中的渗透         09-12-11 16:22:00     作者:刘耀琴    编辑:studa090420论文关键词:思维渗透数学思想方法思维能力契合点创新意识 论文摘要:数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,数形结合的思想贯穿初中数学教学的始终。数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型

2、(主要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问题。(3)与函数有关的代数、几何综合性问题。(4)以图象形式呈现信息的应用性问题。采用数形结合思想解决问题的关键是找准数与形的契合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。推行素质教育,培养面向新世纪的合格人才,使学生具有创新意识,在创造中学会学习,教育应更多的关注学生的学习方法和策略。数学家乔治.波利亚所说:“完善的思想方法犹如北极星,许多人通过它而找到正确的道路”。随着课程改革的深入,“应试教育”向“素质教育”转变的过程中,对学生的考察,不

3、仅考查基础知识,基本技能,更为重视考查能力的培养。如基本知识概念、法则、性质、公式、公理、定理的学习和探索过程中所反映出来的数学思想和方法;要求学生会观察、比较、分析、综合、抽象和概括;会阐述自己的思想和观点。从而提高学生的数学素养,对学生进行思想观念层次上的数学教育。数学学习离不开思维,数学探索需要通过思维来实现,在初中数学教学中逐步渗透数学思想方法,培养思维能力,形成良好的数学思维习惯,既符合新的课程标准,也是进行数学素质教育的一个切入点。“数缺形,少直观;形缺数,难入微”,数形结合的思想,就是研究数学的一种重要的思想方法,它是指把代数的精确刻划与几何的形象直观相统一,将抽象思维与形象直观

4、相结合的一种思想方法。数形结合的思想贯穿初中数学教学的始终。数形结合思想的主要内容体现在以下几个方面:(1)建立适当的代数模型(主要是方程、不等式或函数模型),(2)建立几何模型(或函数图象)解决有关方程和函数的问题。(3)与函数有关的代数、几何综合性问题。(4)以图象形式呈现信息的应用性问题。采用数形结合思想解决问题的关键是找准数与形的契合点。如果能将数与形巧妙地结合起来,有效地相互转化,一些看似无法入手的问题就会迎刃而解,产生事半功倍的效果。数形结合的思想方法,不象一般数学知识那样,通过几节课的教学就可掌握。它根据学生的年龄特征,学生在学习的各阶段的认识水平和知识特点,逐步渗透,螺旋上升,

5、不断的丰富自身的内涵。教学中可以从以下几个方面,让学生在数学学习过程中,通过类比、观察、分析、综合、抽象和概括,形成对数形结合思想的的主动应用。一、  渗透数形结合的思想,养成用数形结合分析问题的意识每个学生在日常生活中都具有一定的图形知识,如绳子和绳子上的结、刻度尺与它上面的刻度,温度计与其上面的温度,我们每天走过的路线可以看作是一条直线,教室里每个学生的坐位等等,我们利用学生的这一认识基础,把生活中的形与数相结合迁移到数学中来,在教学中进行数学数形结合思想的渗透,挖掘教材提供的机会,把握渗透的契机。如数与数轴,一对有序实数与平面直角坐标系,一元一次不等式的解集与一次函数的图象,二

6、元一次方程组的解与一次函数图象之间的关系等,都是渗透数形结合思想的很好机会。如:直线是由无数个点组成的集合,实数包括正实数、零、负实数也有无数个,因为它们的这个共性所以用直线上无数个点来表示实数,这时就把一条直线规定了原点、正方向和单位长度,把这条直线就叫做数轴。建立了数与直线上的点的结合。即:数轴上的每个点都表示一个实数,每个实数都能在数轴上找到表示它的点,建立了实数与数轴上的点的一一对应关系,由此让学生理解了相反数、绝对值的几何意义。建立数轴后及时引导学生利用数轴来进行有理数的比较大小,学生通过观察、分析、归纳总结得出结论:通常规定右边为正方向时,在数轴上的两个数,右边的总大于左边的,正数

7、大于零,零大于负数。让学生理解数形结合思想在解决问题中的应用。为下面进一步学习数形结合思想奠定基础。例:根据所给图形在下列横线上填上合适数字,并说明理由:-1-,-3-,-6-,-10-,-15-,-21-,-28-,-36- - -在讲解通过形来说明数的找规律问题中应该从形中找数。如第一个图形有一个小正方形,第二个图形有三个小正方形,第三个图形有六个小正方形,那么第四个图形将有几个小正方形呢?从前三个中寻找规律,第二个比第一个多两个小正方形,第三个比第二个多三个小正方形,那么第四个就比第三个多四个小正方形,第四个图形就有十个小正方形,第五个比第四个多五个小正方形,那么第五个就有十五个小正方形

8、,依次类推,第六个图形就有二十一个小正方形,第七个图形就有二十八个小正方形,第八个图形就有三十六个小正方形。那么上面的横线上分别填上10、15、21、28、36,第n个图形就应该有1+2+3+4+5+6+n= 个小正方形。这也体现数形结合的思想。例2:小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回。父亲看了10分报纸后,用了15分返回家。你能在下面的平面直角坐标系中画出表示父亲和母亲离家的时间和距离之间的关系吗?结合探索规律和生活中的实际问题,反复渗透,强化数学中的数形结合思想,使学生逐步形成数学学习中的数形结合的意识。并能在应用数形结合思想的时候注意一些基本原

9、则,如是知形确定数还是知数确定形,在探索规律的过程中应该遵循由特殊到一般的思路进行,从而归纳总结出一般性的结论。二、学习数形结合思想,增强解决问题的灵活性,提高分析问题、解决问题的能力在教学中渗透数形结合思想时,应让学生了解,所谓数形结合就是找准数与形的契合点,根据对象的属性,将数与形巧妙地结合起来,有效地相互转化,就成为解决问题的关键所在。数形结合的结合思想主要体现在以下几种:(1)用方程、不等式或函数解决有关几何量的问题; (2)用几何图形或函数图象解决有关方程或函数的问题;(3)解决一些与函数有关的代数、几何综合性问题;(4)以图象形式呈现信息的应用性问题。例1:一个角的补角是这个角余角

10、的3倍,求这个角的度数。解:设这个角为X0,则它的余角为(900-x0),它的补角为(1800-x0)根据题意得:1800-x0=3(900-x0)解这个方程得:x0=450所以这个角为450例2:一块四周镶有宽度相等的花边的地毯如图所示,它的长为8m,宽为5m。如果地毯中央长方形图案的面积为18m2,那么花边有多宽? SHAPE  * MERGEFORMAT 如果设花边的宽为xm,那么地毯中央长方形图案的长_ (8-2x)_m,宽为_(_5-2x)_m.根据题意,可得方程_(8-2x)(5-2x)=18_。解这个方程得出x的值这就是用方程的方法来解决有关几何图形的问题例4

11、:A、B 两地相距150千米,甲、乙两人骑自行车分别从A、B 两地相向而行。假设他们都保持匀速行驶,则他们各自到A地的距离s(千米)都是骑车时间t(时)的一次函数.1 时后乙距A地120千米,  2 时后甲距A地 40千米. 问 经过多长时间两人相遇 ?                        分析可以分别作出两人s 与t 之间的关系图象,找出交点的横

12、坐标就行了。     09-12-11 16:22:00     作者:刘耀琴    编辑:studa090420  例5:下图中 L1 ,L2 分别表示 B 离岸起两船相对于海岸的距离与追赶时间之间的关系。 SHAPE  * MERGEFORMAT 根据图象回答下列问题:当时间t等于多少分钟时,我边防快艇B能够追赶上A。 SHAPE  * MERGEFORMAT  分析:可先根据图象给出的信息,确定L1,L2的函数表达式,然

13、后把两个一次函数表达式组成方程组,解这个方程组就得到了两条直线的交点坐标,即为所得结论。解:由图象知:直线L2过点(0,6)和点(10,8)直线L2过点(0,0)和点(10,6)设直线L1的表达式为s=k1t;直线L2的表达式为s=k2t+b所以    10k1=6      k1=           s= t       10k2+b=8  &

14、#160;         b=6       10k2+6=8   10k2=2    k2=   b=6s= t+6s= t                      

15、0;   t=15             解这个方程组得:S= t+6                         s=9所以,当时间t等于15分钟时,我边防快艇B能够追赶上A  。  由以上的

16、几个例子,我们可以看出数形结合思想的应用往往能使一些错综复杂的问题变得直观,解题思路非常的清晰,步骤非常的明了。另一方面在学生学习过程中,可以激发学生学习数学的兴趣。利用现有教材,教学中着意渗透并力求帮助学生初步掌握数形结合的思想方法,结合其它数学思想方法的学习,注意几种思想方法的综合使用,给学生提供足够的材料和时间,启发学生积极思维。相信会使学生在认识层次上得到极大的提高,收到事半功倍的教学成效。参考文献:1 全日制义务教育课程标准(实验稿)。北京师范大学出版社2 初中生学习法与能力培养任勇3 2008年陕西中考全程指导中考命题研究组     09-1

17、2-11 16:22:00     作者:刘耀琴    编辑:studa090420  例5:下图中 L1 ,L2 分别表示 B 离岸起两船相对于海岸的距离与追赶时间之间的关系。 SHAPE  * MERGEFORMAT 根据图象回答下列问题:当时间t等于多少分钟时,我边防快艇B能够追赶上A。 SHAPE  * MERGEFORMAT  分析:可先根据图象给出的信息,确定L1,L2的函数表达式,然后把两个一次函数表达式组成方程组,解这个方程组就得到了两条直线的交点坐

18、标,即为所得结论。解:由图象知:直线L2过点(0,6)和点(10,8)直线L2过点(0,0)和点(10,6)设直线L1的表达式为s=k1t;直线L2的表达式为s=k2t+b所以    10k1=6      k1=           s= t       10k2+b=8            b=6       10k2+6=8   10k2=2    k2=   b=6s= t+6s= t              

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论