版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.3 实际问题与二次函数第2课时 二次函数与商品利润 3. 二次函数二次函数y=2(x-3)2+5的对称轴是的对称轴是 ,顶点坐标是顶点坐标是 。当。当x= 时,时,y的最的最 值值是是 。 4. 二次函数二次函数y=-3(x+4)2-1的对称轴是的对称轴是 ,顶点坐标是顶点坐标是 。当。当x= 时,函数有最时,函数有最 值,值,是是 。 5.二次函数二次函数y=2x2-8x+9的对称轴是的对称轴是 ,顶,顶点坐标是点坐标是 .当当x= 时,函数有最时,函数有最 值,值,是是 。直线x=3(3 ,5)3小5直线x=-4(-4 ,-1)-4大-1直线x=2(2 ,1)2小1基础扫描 在日常生
2、活中存在着许许多多的与数学知识有关的在日常生活中存在着许许多多的与数学知识有关的 实际问题。如繁华的商业城中很多人在买卖东西。实际问题。如繁华的商业城中很多人在买卖东西。 如果你去买商品,你会选买哪一家呢?如果你是商场经理,如果你去买商品,你会选买哪一家呢?如果你是商场经理,如何定价才能使商场获得最大利润呢?如何定价才能使商场获得最大利润呢? 问题1.已知某商品的进价为每件40元,售价是每件 60元,每星期可卖出300件。市场调查反映:如果调整价格 ,每涨价1元,每星期要少卖出10件。要想获得6090元的利润,该商品应定价为多少元? 6000 (20+x)(300-10 x) (20+x)(
3、300-10 x) (20+x)( 300-10 x) =6090 自主探究分析:没调价之前商场一周的利润为 元;设销售单价上调了x元,那么每件商品的利润可表示为 元,每周的销售量可表示为 件,一周的利润可表示为 元,要想获得6090元利润可列方程 。问题问题2.已知某商品的进价为每件已知某商品的进价为每件4040元,售元,售价是每件价是每件6060元,每星期可卖出元,每星期可卖出300300件。市件。市场调查反映:如调整价格场调查反映:如调整价格 ,每涨价一元,每涨价一元,每星期要少卖出每星期要少卖出1010件。该商品应定价为多件。该商品应定价为多少元时,商场能获得最大利润?少元时,商场能获
4、得最大利润?合作交流问题问题3.已知某商品的进价为每件已知某商品的进价为每件4040元。元。现在的售价是每件现在的售价是每件6060元,每星期可卖元,每星期可卖出出300300件。市场调查反映:如调整价格,件。市场调查反映:如调整价格,每降价一元,每星期可多卖出每降价一元,每星期可多卖出2020件。件。如何定价才能使利润最大?如何定价才能使利润最大?问题问题4.4.已知某商品的进价为每件已知某商品的进价为每件4040元。元。现在的售价是每件现在的售价是每件6060元,每星期可卖元,每星期可卖出出300300件。市场调查反映:如调整价格件。市场调查反映:如调整价格 ,每涨价一元,每星期要少卖出每
5、涨价一元,每星期要少卖出1010件;件;每降价一元,每星期可多卖出每降价一元,每星期可多卖出2020件。件。如何定价才能使利润最大?如何定价才能使利润最大?解:设每件涨价为解:设每件涨价为x元时获得的总利润为元时获得的总利润为y元元.y =(60-40+x)(300-10 x) =(20+x)(300-10 x) =-10 x2+100 x+6000 =-10(x2-10 x ) +6000 =-10(x-5)2-25 +6000 =-10(x-5)2+6250当当x=5时,时,y的最大值是的最大值是6250.定价定价:60+5=65(元)(元)(0 x30)怎样确定x的取值范围解解:设每件降
6、价设每件降价x元时的总利润为元时的总利润为y元元.y=(60-40-x)(300+20 x) =(20-x)(300+20 x) =-20 x2+100 x+6000 =-20(x2-5x-300) =-20(x-2.5)2+6125 (0 x20)所以定价为所以定价为60-2.5=57.5时利润最大时利润最大,最大值为最大值为6125元元. 答答:综合以上两种情况,定价为综合以上两种情况,定价为65元时可获得元时可获得最大利润为最大利润为6250元元.由由(2)(3)的讨论及现在的销的讨论及现在的销售情况售情况,你知道应该如何定你知道应该如何定价能使利润最大了吗价能使利润最大了吗?怎样确定x
7、的取值范围(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.解决这类题目的一般步骤w 某商店购进一批单价为某商店购进一批单价为2020元的日用品元的日用品, ,如果以单如果以单价价3030元销售元销售, ,那么半个月内可以售出那么半个月内可以售出400400件件. .根据销根据销售经验售经验, ,提高单价会导致销售量的减少提高单价会导致销售量的减少, ,即销售单价即销售单价每提高每提高1 1元元, ,销售量相应减少销售量相应减少2020件件. .售价售价提高多少元提高多少元时时, ,才能在半个
8、月内获得最大利润才能在半个月内获得最大利润? ?解:设售价提高x元时,半月内获得的利润为y元.则 y=(x+30-20)(400-20 x) =-20 x2+200 x+4000 =-20(x-5)2+4500 当x=5时,y最大 =4500 答:当售价提高5元时,半月内可获最大利润4500元我来当老板2.某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本)解析:(1)降低x元后,所销售的件数是(500+100 x),y=100 x2+600 x+5500 (0 x11 )
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 出租厨房场地合同范例
- 供销合同范例格式
- 冻库门更换合同范例
- 厂房装修押金合同范例
- 昌平家电运输合同范例
- 建楼房施工合同范例
- 借用铺面合同范例
- 心理健康讲座合同范例
- 校园网络维护合同范例
- 别墅大门购买合同范例
- DB34∕T 2290-2022 水利工程质量检测规程
- 国开(河北)2024年《公文写作》形考作业4答案
- 电信行业移动通信网络质量提升方案
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 古代小说戏曲专题-形考任务2-国开-参考资料
- 文印竞标合同范本
- 2024至2030年中国汽车EPS无刷电机行业市场前景预测与发展趋势研究报告
- 人教版道德与法治五年级上册全册单元测试卷课件
- 2024-2030年中国聚醚醚酮树脂行业市场发展趋势与前景展望战略分析报告
- 2019版外研社高中英语必选择性必修一-四单词
- 2024年6月浙江省高考历史试卷(真题+答案)
评论
0/150
提交评论