提高SolidWorks的装配体性能方法_第1页
提高SolidWorks的装配体性能方法_第2页
提高SolidWorks的装配体性能方法_第3页
提高SolidWorks的装配体性能方法_第4页
提高SolidWorks的装配体性能方法_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、注:)UDPG可看作是活性葡萄糖,在体内充作葡萄糖供体。)糖原引物是指原有的细胞内较小的糖原分子,游离葡萄糖不能作为UDPG的葡萄糖基的接受体。)葡萄糖基转移给糖原引物的糖链末端,形成-1,4糖苷键。在糖原合酶作用下,糖链只能延长,不能形成分支。当糖链长度达到1218个葡萄糖基时,分支酶将约67个葡萄糖基转移至邻近的糖链上,以-1,6糖苷键相接。调节:糖原合成酶的共价修饰调节。、分解过程:(Gn+1磷酸化酶 (Gn1-磷酸葡萄糖 6-磷酸葡萄糖葡萄糖-6-磷酸酶GPi注:)磷酸化酶只能分解-1,4糖苷键,对-1,6糖苷键无作用。)糖链分解至离分支处约个葡萄基时,转移酶把个葡萄基转移至邻近糖链的

2、末端,仍以-1,4糖苷键相接,剩下个以-1,6糖苷键与糖链形成分支的葡萄糖基被-1,6葡萄糖苷酶水解成游离葡萄糖。转移酶与-1,6葡萄糖苷酶是同一酶的两种活性,合称脱支酶。)最终产物中约85为1-磷酸葡萄糖,其余为游离葡萄糖。调节:磷酸化酶受共价修饰调节,葡萄糖起变构抑制作用。五、糖异生途径1、 过程乳酸丙氨酸等生糖氨基酸NADH 丙酮酸丙酮酸ATP 丙酮酸丙酮酸丙酮酸羧化酶草酰乙酸草酰乙酸 (线粒体内天冬氨酸苹果酸GTP天冬氨酸 NADH草酰乙酸苹果酸磷酸烯醇式丙酮酸羧激酶磷酸烯醇式丙酮酸2-磷酸甘油酸(胞液ATP3-磷酸甘油酸 NADH1,3-二磷酸甘油酸甘油ATP3-磷酸甘油醛 磷酸二羟

3、丙酮3-磷酸甘油NADH1,6-双磷酸果糖果糖双磷酸酶6-磷酸果糖6-磷酸葡萄糖1-磷酸葡萄糖糖原葡萄糖-6-磷酸酶葡萄糖注意:)糖异生过程中丙酮酸不能直接转变为磷酸烯醇式丙酮酸,需经过草酰乙酸的中间步骤,由于草酰乙酸羧化酶仅存在于线粒体内,故胞液中的丙酮酸必须进入线粒体,才能羧化生成草酰乙酸。但是,草酰乙酸不能直接透过线粒体膜,需借助两种方式将其转运入胞液:一是经苹果酸途径,多数为以丙酮酸或生糖氨基酸为原料异生成糖时;另一种是经天冬氨酸途径,多数为乳酸为原料异生成糖时。)在糖异生过程中,1,3-二磷酸甘油酸还原成3-磷酸甘油醛时,需NADH,当以乳酸为原料异生成糖时,其脱氢生成丙酮酸时已在胞

4、液中产生了NADH以供利用;而以生糖氨基酸为原料进行糖异生时,NADH则必须由线粒体内提供,可来自脂酸-氧化或三羧酸循环。)甘油异生成糖耗一个ATP,同时也生成一个NADH2、 调节2,6-双磷酸果糖的水平是肝内调节糖的分解或糖异生反应方向的主要信号,糖酵解加强,则糖异生减弱;反之亦然。3、 生理意义)空腹或饥饿时依赖氨基酸、甘油等异生成糖,以维持血糖水平恒定。)补充肝糖原,摄入的相当一部分葡萄糖先分解成丙酮酸、乳酸等三碳化合物,后者再异生成糖原。合成糖原的这条途径称三碳途径。)调节酸碱平衡,长期饥饿进,肾糖异生增强,有利于维持酸碱平衡。第二章 脂类代谢一、甘油三酯的合成代谢合成部位:肝、脂肪

5、组织、小肠,其中肝的合成能力最强。合成原料:甘油、脂肪酸1、 甘油一酯途径(小肠粘膜细胞)2-甘油一酯脂酰CoA转移酶1,2-甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA脂酰CoA、甘油二酯途径(肝细胞及脂肪细胞)葡萄糖3-磷酸甘油脂酰CoA转移酶1脂酰-3-磷酸甘油脂酰CoA转移酶脂酰CoA 脂酰CoA磷脂酸磷脂酸磷酸酶1,2甘油二酯脂酰CoA转移酶甘油三酯脂酰CoA二、甘油三酯的分解代谢、脂肪的动员储存在脂肪细胞中的脂肪被脂肪酶逐步水解为游离脂肪酸(FFA)及甘油并释放入血以供其它组织氧化利用的过程。甘油三酯激素敏感性甘油三酯脂肪酶甘油二酯甘油一酯甘油FFA FFA FFA-磷酸甘油磷酸二羟

6、丙酮糖酵解或糖异生途径、脂肪酸的-氧化)脂肪酸活化(胞液中)脂酸脂酰CoA合成酶脂酰CoA(含高能硫酯键)ATPAMP)脂酰CoA进入线粒体脂酰CoA肉毒碱线肉毒碱脂酰CoA 肉毒碱脂酰转移酶 粒 酶CoASH脂酰肉毒碱 体脂酰肉毒碱CoASH)脂肪酸-氧化脂酰CoA进入线粒体基质后,进行脱氢、加水、再脱氢及硫解等四步连续反应,生成1分子比原来少2个碳原子的脂酰CoA、1分子乙酰CoA、1分子FADH2和1分子NADH。以上生成的比原来少2个碳原子的脂酰CoA,可再进行脱氢、加水、再脱氢及硫解反应。如此反复进行,以至彻底。)能量生成以软脂酸为例,共进行7次-氧化,生成7分子FADH2、7分子N

7、ADH及8分子乙酰CoA,即共生成(7*2+(7*3+(8*12-2=129)过氧化酶体脂酸氧化主要是使不能进入线粒体的廿碳,廿二碳脂酸先氧化成较短链脂酸,以便进入线粒体内分解氧化,对较短链脂酸无效。三、酮体的生成和利用组织特点:肝内生成肝外用。合成部位:肝细胞的线粒体中。酮体组成:乙酰乙酸、-羟丁酸、丙酮。1、 生成脂肪酸-氧化2*乙酰CoA乙酰乙酰CoAHMGCoA合成酶羟甲基戊二酸单酰CoA(HMGCoAHMGCoA裂解酶乙酰乙酸-羟丁酸脱氢酶-羟丁酸NADH丙酮CO22、 利用1 -羟丁酸ATP+HSCoA乙酰乙酸琥珀酰CoAp 乙酰乙酸硫激酶 琥珀酰 CoA 转硫酶 AMP乙酰乙酰C

8、oA 琥珀酸乙酰乙酰CoA硫解酶乙酰CoA三羧酸循环)丙酮可随尿排出体外,部分丙酮可在一系列酶作用下转变为丙酮酸或乳酸,进而异生成糖。在血中酮体剧烈升高时,从肺直接呼出。四、脂酸的合成代谢1、 软脂酸的合成合成部位:线粒体外胞液中,肝是体体合成脂酸的主要场所。合成原料:乙酰CoA、ATPNADPHHCO3-Mn+等。合成过程:)线粒体内的乙酰CoA不能自由透过线粒体内膜,主要通过柠檬酸-丙酮酸循环转移至胞液中。)乙酰CoA乙酰CoA羧化酶丙二酰CoAATP)丙二酰CoA通过酰基转移、缩合、还原、脱水、再还原等步骤,碳原子由2增加至4个。经过7次循环,生成16个碳原子的软脂酸。更长碳链的脂酸则是

9、对软脂酸的加工,使其碳链延长。在内质网脂酸碳链延长酶体系的作用下,一般可将脂酸碳链延长至二十四碳,以十八碳的硬脂酸最多;在线粒体脂酸延长酶体系的催化下,一般可延长脂酸碳链至24或26个碳原子,而以硬脂酸最多。、不饱和脂酸的合成人体含有的不饱和脂酸主要有软油酸、油酸、亚油酸,亚麻酸及花生四烯酸等,前两种单不饱和脂酸可由人体自身合成,而后三种多不饱和脂酸,必须从食物摄取。五、前列腺素及其衍生物的生成细胞膜中的磷脂磷脂酶A2花生四烯酸PGH合成酶PGH2TXA2合成酶提高PGD2、PGE2、PGI23D设计软件,尤其在大装配体方面使用了独特的技术来优化系统性能。本文给出几种改善装配体性能的方法,在相

10、同的系统条件下,能够提高软件的可操作性,进而提高设计效率。3D1、除需ATP外,还需CTP参加。CTPCPU 、内存、显卡的影响最大。如果计算机系统内存不足,Windows就自动启用虚拟内存,由于虚拟内存位于硬盘,造成系统内存与硬盘频繁交换数据,导致系统性能急剧下降;CPU性能过低时,延长运算时间,导致系统响应时间过长显卡性能不佳时引起视图更新慢,移动模型时出现停顿现象,并导致CPU乙醇胺CMP运行SolidWorks葡萄糖CPU:奔腾以上内存:小零件或装配体(胆碱CMP个特征或少于1000个零件,内存最少为512M;)(大于1000个特征或2500个零件,内存需要1G葡萄糖3-磷酸甘油磷脂酸

11、甘油二酯合成酶 CTP PPi的独立显卡磷脂酰甘油避免采用集成显卡(心磷脂此外,磷脂酰胆碱亦可由磷脂酰乙醇胺从S-腺苷甲硫氨酸获得甲基生成;磷脂酰丝氨酸可由磷脂酰乙醇胺羧化生成。(1在SolidWorks和A2任务管理器,在性能页,如果CPU的占用率经常在100%,那么系统瓶颈就在CPU或显卡,建议升级CPU或显卡;如果系统内存大部分被占用,虚拟内存使用量又很大,操作过程中硬盘灯频繁闪烁,这说明系统瓶颈在内存,建议扩大内存。以笔者的个人计算机为例:如图1包含2500个立方体的装配体,CPU利用率正常,内存偏低,系统操作性能有些下降。如图2包含10000个立方体的装配体,CPU利用率100%,物

12、理内存不够,启动了虚拟内存,此时系统操作性能急剧下降,无法正常进行设计工作。(2使用SolidWorks RX(性能诊断工具测试您的计算机系统是否满足SolidWorks的需求,该工具得出更加详细的诊断结果和建议。如图3 SolidWorks Rx诊断报告,SolidWorks2006版以上软件包含该工具。图3 SolidWorks Rx诊断报告二、合理使用装配技术提高系统性能的解决方案1.轻化零部件在SolidWorks装配体中,零部件有多种状态,分别是:还原、轻化、压缩、隐藏。不同状态的零部件占用不同的系统资源。零部件的各种状态定义如下:还原状态:零部件的模型信息完全装入内存;轻化状态:零

13、部件的模型信息部分装入内存,只在需要时才装入内存并参与运算;压缩状态:零部件的模型信息暂时从内存中清除,零件功能不再可用也不参与运算;隐藏状态:零部件的模型信息完全装入内存,但是零部件不可见。表1 零部件各种状态下的性能比较零部件占用系统资源越多,系统总体性能下降就越多。通过表1得出,轻化零部件使装入和重建模型的速度加快;压缩零部件不仅加快装入和重建模型的速度,还加快了显示性能;隐藏零部件加快显示性能,但不能改变装入和重建模型的速度。通过综合使用不同的零部件状态,设计人员能获得更高的装配体性能。2.使用简化零部件零部件大都带有装配体不必要的模型信息,如装饰性圆角、倒角、部分孔、凹槽和凸台等。如

14、果零部件把这些信息带入装配体内,就会占用部分资源,降低系统性能。设计人员通过创建零部件的简化配置,压缩不必要的信息(如图4所示,简化零件资源消耗,装入/重建模型时的速度就会更快。另外,装配使用简化零部件后,选择和浏览模型就更加容易,设计工程图时,也不会显示不必要的细节。图43.使用装配体配置装配体设计过程中,设计人员一般针对装配体某个模块进行集中操作。如图5的电控柜,设计人员分别设计电容、熔断器、柜门、铜牌等模块。设计铜牌时,熔断器、柜门和开关等与铜牌没有任何关联,它们的存在不仅降低系统性能,还会干扰设计人员的视线。所以设计铜牌时,设计人员通过压缩熔断器、柜门等不相关的零部件,就能明显提高插入

15、和重建模型的速度。图5中 a、b、c分别给出未简化、简化和使用装配体配置的三种图例,分析如下:(1图5 a所示的未简化配置图例,装配体中显示很多细节。如:立柱上的孔等,这样会消耗大量系统资源,导致插入/重建模型速度慢,显示速度慢,拖动模型时出现明显的停顿现象。(2图5 b所示的使用零部件简化配置图例,零部件的很多细节都不显示也不参与运算。这样插入/重建模型速度明显提高,显示速度明显的改善,拖动模型时基本没有出现停顿现象。(3图5 c所示的使用装配体配置图例,在设计铜牌时,使用装配体配置,压缩掉不必要的零部件,并使用简化配置,使插入/重建模型速度大大提高,显示的速度也有很大的提高,拖动时不再出现

16、停顿现象。综上所述,可以得出:同等条件下,使用装配体配置得到的系统性能优于使用简化零部件的性能,使用简化零部件得到的系统性能优于未使用简化零部件的性能。设计人员根据装配体的功能模块,分别创建装配体配置。设计时根据需要切换到相应的配置,这样与在整个装配体内设计相比,局部设计能大大提高系统的性能。 图54.使用子装配体装配体设计中,部分设计人员在单个装配体内装入大量零件,而不使用子装配体,使单个装配体内同层零件过多导致以下问题:(1插入/重建模型速度慢:同层零件过多,每插入一个零部件或重建模型时,所有配合关系、几何信息都重新计算,这样就占用大量的系统资源。如果装配体划分为多个子装配体,整体操作时,就不计算子装配体内的配合和几何信息,使计算量大大减少,提高系统性。(2查找指定配合困难:如果同层零件过多,配合数量会更多,这样就很难在其中找到指定配合。一旦配合出现错误,分析和更改就十分困难。按模块划分子装配体,错误就被限制在子装配体内,分析查找错误就会更容易。(3查找零件困难:如果装配体内零件过多,那么要查找指定零件就变得十分困难。把零件划分到不同子装配体,按树型结构查找就方便得多。所以设计装配体时,按照功能模块划分子装配体,这样整体结构就更加清晰,更改和排查错误更方便,同

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论